IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v128y2014icp164-174.html
   My bibliography  Save this article

Experimental validation of a real-time energy management system using multi-period gravitational search algorithm for microgrids in islanded mode

Author

Listed:
  • Marzband, Mousa
  • Ghadimi, Majid
  • Sumper, Andreas
  • Domínguez-García, José Luis

Abstract

Both performance optimization and scheduling of the distributed generation (DG) are relevant implementing an energy management system (EMS) within Microgrid (MG). Furthermore, optimization methods need to be applied to achieve maximum efficiency, improve economic dispatch as well as acquiring the best performance. This paper proposes an optimization method based on gravitational search algorithm to solve such problem in a MG including different types of DG units with particular attention to the technical constraints. This algorithm includes the implementation of some variation in load consumption model considering accessibility to the energy storage (ES) and demand response (DR). The proposed method is validated experimentally. Obtained results show the improved performance of the proposed algorithm in the isolated MG, in comparison with conventional EMS. Moreover, this algorithm which is feasible from computational viewpoint, has many advantages as peak consumption reduction, electricity generation cost minimization among other.

Suggested Citation

  • Marzband, Mousa & Ghadimi, Majid & Sumper, Andreas & Domínguez-García, José Luis, 2014. "Experimental validation of a real-time energy management system using multi-period gravitational search algorithm for microgrids in islanded mode," Applied Energy, Elsevier, vol. 128(C), pages 164-174.
  • Handle: RePEc:eee:appene:v:128:y:2014:i:c:p:164-174
    DOI: 10.1016/j.apenergy.2014.04.056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914004097
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.04.056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fotouhi Ghazvini, M.A. & Morais, Hugo & Vale, Zita, 2012. "Coordination between mid-term maintenance outage decisions and short-term security-constrained scheduling in smart distribution systems," Applied Energy, Elsevier, vol. 96(C), pages 281-291.
    2. Niknam, Taher & Golestaneh, Faranak & Malekpour, Ahmadreza, 2012. "Probabilistic energy and operation management of a microgrid containing wind/photovoltaic/fuel cell generation and energy storage devices based on point estimate method and self-adaptive gravitational," Energy, Elsevier, vol. 43(1), pages 427-437.
    3. Su, Wencong & Huang, Alex Q., 2014. "A game theoretic framework for a next-generation retail electricity market with high penetration of distributed residential electricity suppliers," Applied Energy, Elsevier, vol. 119(C), pages 341-350.
    4. Chen, Yen-Haw & Lu, Su-Ying & Chang, Yung-Ruei & Lee, Ta-Tung & Hu, Ming-Che, 2013. "Economic analysis and optimal energy management models for microgrid systems: A case study in Taiwan," Applied Energy, Elsevier, vol. 103(C), pages 145-154.
    5. Kyriakarakos, George & Piromalis, Dimitrios D. & Dounis, Anastasios I. & Arvanitis, Konstantinos G. & Papadakis, George, 2013. "Intelligent demand side energy management system for autonomous polygeneration microgrids," Applied Energy, Elsevier, vol. 103(C), pages 39-51.
    6. Parisio, Alessandra & Rikos, Evangelos & Tzamalis, George & Glielmo, Luigi, 2014. "Use of model predictive control for experimental microgrid optimization," Applied Energy, Elsevier, vol. 115(C), pages 37-46.
    7. Zhao, Bo & Zhang, Xuesong & Li, Peng & Wang, Ke & Xue, Meidong & Wang, Caisheng, 2014. "Optimal sizing, operating strategy and operational experience of a stand-alone microgrid on Dongfushan Island," Applied Energy, Elsevier, vol. 113(C), pages 1656-1666.
    8. Marzband, Mousa & Sumper, Andreas & Ruiz-Álvarez, Albert & Domínguez-García, José Luis & Tomoiagă, Bogdan, 2013. "Experimental evaluation of a real time energy management system for stand-alone microgrids in day-ahead markets," Applied Energy, Elsevier, vol. 106(C), pages 365-376.
    9. Behrang, M.A. & Assareh, E. & Ghalambaz, M. & Assari, M.R. & Noghrehabadi, A.R., 2011. "Forecasting future oil demand in Iran using GSA (Gravitational Search Algorithm)," Energy, Elsevier, vol. 36(9), pages 5649-5654.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jingrui & Wu, Yihong & Guo, Yiran & Wang, Bo & Wang, Hengyue & Liu, Houde, 2016. "A hybrid harmony search algorithm with differential evolution for day-ahead scheduling problem of a microgrid with consideration of power flow constraints," Applied Energy, Elsevier, vol. 183(C), pages 791-804.
    2. Pascual, Julio & Barricarte, Javier & Sanchis, Pablo & Marroyo, Luis, 2015. "Energy management strategy for a renewable-based residential microgrid with generation and demand forecasting," Applied Energy, Elsevier, vol. 158(C), pages 12-25.
    3. Velik, Rosemarie & Nicolay, Pascal, 2014. "Grid-price-dependent energy management in microgrids using a modified simulated annealing triple-optimizer," Applied Energy, Elsevier, vol. 130(C), pages 384-395.
    4. Danny Espín-Sarzosa & Rodrigo Palma-Behnke & Oscar Núñez-Mata, 2020. "Energy Management Systems for Microgrids: Main Existing Trends in Centralized Control Architectures," Energies, MDPI, vol. 13(3), pages 1-32, January.
    5. Korkas, Christos D. & Baldi, Simone & Michailidis, Iakovos & Kosmatopoulos, Elias B., 2015. "Intelligent energy and thermal comfort management in grid-connected microgrids with heterogeneous occupancy schedule," Applied Energy, Elsevier, vol. 149(C), pages 194-203.
    6. Parisio, Alessandra & Rikos, Evangelos & Tzamalis, George & Glielmo, Luigi, 2014. "Use of model predictive control for experimental microgrid optimization," Applied Energy, Elsevier, vol. 115(C), pages 37-46.
    7. Fares, Robert L. & Webber, Michael E., 2015. "Combining a dynamic battery model with high-resolution smart grid data to assess microgrid islanding lifetime," Applied Energy, Elsevier, vol. 137(C), pages 482-489.
    8. Fontenot, Hannah & Dong, Bing, 2019. "Modeling and control of building-integrated microgrids for optimal energy management – A review," Applied Energy, Elsevier, vol. 254(C).
    9. Mohan, Vivek & Singh, Jai Govind & Ongsakul, Weerakorn, 2015. "An efficient two stage stochastic optimal energy and reserve management in a microgrid," Applied Energy, Elsevier, vol. 160(C), pages 28-38.
    10. Kuznetsova, Elizaveta & Li, Yan-Fu & Ruiz, Carlos & Zio, Enrico, 2014. "An integrated framework of agent-based modelling and robust optimization for microgrid energy management," Applied Energy, Elsevier, vol. 129(C), pages 70-88.
    11. Restrepo, Mauricio & Cañizares, Claudio A. & Simpson-Porco, John W. & Su, Peter & Taruc, John, 2021. "Optimization- and Rule-based Energy Management Systems at the Canadian Renewable Energy Laboratory microgrid facility," Applied Energy, Elsevier, vol. 290(C).
    12. Zhao, Bo & Xue, Meidong & Zhang, Xuesong & Wang, Caisheng & Zhao, Junhui, 2015. "An MAS based energy management system for a stand-alone microgrid at high altitude," Applied Energy, Elsevier, vol. 143(C), pages 251-261.
    13. Boukettaya, Ghada & Krichen, Lotfi, 2014. "A dynamic power management strategy of a grid connected hybrid generation system using wind, photovoltaic and Flywheel Energy Storage System in residential applications," Energy, Elsevier, vol. 71(C), pages 148-159.
    14. Ahmad Khan, Aftab & Naeem, Muhammad & Iqbal, Muhammad & Qaisar, Saad & Anpalagan, Alagan, 2016. "A compendium of optimization objectives, constraints, tools and algorithms for energy management in microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1664-1683.
    15. Elsied, Moataz & Oukaour, Amrane & Youssef, Tarek & Gualous, Hamid & Mohammed, Osama, 2016. "An advanced real time energy management system for microgrids," Energy, Elsevier, vol. 114(C), pages 742-752.
    16. Izadbakhsh, Maziar & Gandomkar, Majid & Rezvani, Alireza & Ahmadi, Abdollah, 2015. "Short-term resource scheduling of a renewable energy based micro grid," Renewable Energy, Elsevier, vol. 75(C), pages 598-606.
    17. Mazzola, Simone & Astolfi, Marco & Macchi, Ennio, 2015. "A detailed model for the optimal management of a multigood microgrid," Applied Energy, Elsevier, vol. 154(C), pages 862-873.
    18. Bruni, G. & Cordiner, S. & Mulone, V. & Sinisi, V. & Spagnolo, F., 2016. "Energy management in a domestic microgrid by means of model predictive controllers," Energy, Elsevier, vol. 108(C), pages 119-131.
    19. Giaouris, Damian & Papadopoulos, Athanasios I. & Patsios, Charalampos & Walker, Sara & Ziogou, Chrysovalantou & Taylor, Phil & Voutetakis, Spyros & Papadopoulou, Simira & Seferlis, Panos, 2018. "A systems approach for management of microgrids considering multiple energy carriers, stochastic loads, forecasting and demand side response," Applied Energy, Elsevier, vol. 226(C), pages 546-559.
    20. Sahoo, Subham & Pullaguram, Deepak & Mishra, Sukumar & Wu, Jianzhong & Senroy, Nilanjan, 2018. "A containment based distributed finite-time controller for bounded voltage regulation & proportionate current sharing in DC microgrids," Applied Energy, Elsevier, vol. 228(C), pages 2526-2538.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:128:y:2014:i:c:p:164-174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.