Liquid spherical lens as an effective auxiliary optical unit for CPV/T system with remarkable hydrogen production efficiency
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2023.120733
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Renzi, M. & Egidi, L. & Comodi, G., 2015. "Performance analysis of two 3.5kWp CPV systems under real operating conditions," Applied Energy, Elsevier, vol. 160(C), pages 687-696.
- Ma, Ben-Chi & Lin, Hua & Zhu, Yizhou & Zeng, Zilong & Geng, Jiafeng & Jing, Dengwei, 2022. "A new Concentrated Photovoltaic Thermal-Hydrogen system with photocatalyst suspension as optical liquid filter," Renewable Energy, Elsevier, vol. 194(C), pages 1221-1232.
- Han, Xinyue & Xue, Dengshuai & Zheng, Jun & Alelyani, Sami M. & Chen, Xiaobin, 2019. "Spectral characterization of spectrally selective liquid absorption filters and exploring their effects on concentrator solar cells," Renewable Energy, Elsevier, vol. 131(C), pages 938-945.
- Chemisana, D. & Fernandez, E.F. & Riverola, A. & Moreno, A., 2018. "Fluid-based spectrally selective filters for direct immersed PVT solar systems in building applications," Renewable Energy, Elsevier, vol. 123(C), pages 263-272.
- Shanks, Katie & Senthilarasu, S. & Mallick, Tapas K., 2016. "Optics for concentrating photovoltaics: Trends, limits and opportunities for materials and design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 394-407.
- Looser, R. & Vivar, M. & Everett, V., 2014. "Spectral characterisation and long-term performance analysis of various commercial Heat Transfer Fluids (HTF) as Direct-Absorption Filters for CPV-T beam-splitting applications," Applied Energy, Elsevier, vol. 113(C), pages 1496-1511.
- Zhang, Gaoming & Wei, Jinjia & Wang, Zexin & Xie, Huling & Xi, Yonghao & Khalid, Muhammad, 2019. "Investigation into effects of non-uniform irradiance and photovoltaic temperature on performances of photovoltaic/thermal systems coupled with truncated compound parabolic concentrators," Applied Energy, Elsevier, vol. 250(C), pages 245-256.
- Liang, Huaxu & Wang, Fuqiang & Yang, Luwei & Cheng, Ziming & Shuai, Yong & Tan, Heping, 2021. "Progress in full spectrum solar energy utilization by spectral beam splitting hybrid PV/T system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
- Renzi, Massimiliano & Cioccolanti, Luca & Barazza, Giorgio & Egidi, Lorenzo & Comodi, Gabriele, 2017. "Design and experimental test of refractive secondary optics on the electrical performance of a 3-junction cell used in CPV systems," Applied Energy, Elsevier, vol. 185(P1), pages 233-243.
- Ju, Xing & Pan, Xinyu & Zhang, Zheyang & Xu, Chao & Wei, Gaosheng, 2019. "Thermal and electrical performance of the dense-array concentrating photovoltaic (DA-CPV) system under non-uniform illumination," Applied Energy, Elsevier, vol. 250(C), pages 904-915.
- Saurabh Tembhurne & Fredy Nandjou & Sophia Haussener, 2019. "A thermally synergistic photo-electrochemical hydrogen generator operating under concentrated solar irradiation," Nature Energy, Nature, vol. 4(5), pages 399-407, May.
- Burhan, Muhammad & Oh, Seung Jin & Chua, Kian Jon Ernest & Ng, Kim Choon, 2017. "Solar to hydrogen: Compact and cost effective CPV field for rooftop operation and hydrogen production," Applied Energy, Elsevier, vol. 194(C), pages 255-266.
- Senturk, Ali, 2020. "Investigation of datasheet provided temperature coefficients of photovoltaic modules under various sky profiles at the field by applying a new validation procedure," Renewable Energy, Elsevier, vol. 152(C), pages 644-652.
- Otanicar, Todd P. & Wingert, Rhetta & Orosz, Matthew & McPheeters, Clay, 2020. "Concentrating photovoltaic retrofit for existing parabolic trough solar collectors: Design, experiments, and levelized cost of electricity," Applied Energy, Elsevier, vol. 265(C).
- Jieyang Jia & Linsey C. Seitz & Jesse D. Benck & Yijie Huo & Yusi Chen & Jia Wei Desmond Ng & Taner Bilir & James S. Harris & Thomas F. Jaramillo, 2016. "Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%," Nature Communications, Nature, vol. 7(1), pages 1-6, December.
- Islam, Kazi & Riggs, Brian & Ji, Yaping & Robertson, John & Spitler, Christopher & Romanin, Vince & Codd, Daniel & Escarra, Matthew D., 2019. "Transmissive microfluidic active cooling for concentrator photovoltaics," Applied Energy, Elsevier, vol. 236(C), pages 906-915.
- Saura, José M. & Chemisana, Daniel & Rodrigo, Pedro M. & Almonacid, Florencia M. & Fernández, Eduardo F., 2022. "Effect of non-uniformity on concentrator multi-junction solar cells equipped with refractive secondary optics under shading conditions," Energy, Elsevier, vol. 238(PC).
- Abdelhamid, Mahmoud & Widyolar, Bennett K. & Jiang, Lun & Winston, Roland & Yablonovitch, Eli & Scranton, Gregg & Cygan, David & Abbasi, Hamid & Kozlov, Aleksandr, 2016. "Novel double-stage high-concentrated solar hybrid photovoltaic/thermal (PV/T) collector with nonimaging optics and GaAs solar cells reflector," Applied Energy, Elsevier, vol. 182(C), pages 68-79.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Qu, Wanjun & Hong, Hui & Jin, Hongguang, 2019. "A spectral splitting solar concentrator for cascading solar energy utilization by integrating photovoltaics and solar thermal fuel," Applied Energy, Elsevier, vol. 248(C), pages 162-173.
- Ju, Xing & Abd El-Samie, Mostafa M. & Xu, Chao & Yu, Hangyu & Pan, Xinyu & Yang, Yongping, 2020. "A fully coupled numerical simulation of a hybrid concentrated photovoltaic/thermal system that employs a therminol VP-1 based nanofluid as a spectral beam filter," Applied Energy, Elsevier, vol. 264(C).
- Ma, Ben-Chi & Lin, Hua & Zhu, Yizhou & Zeng, Zilong & Geng, Jiafeng & Jing, Dengwei, 2022. "A new Concentrated Photovoltaic Thermal-Hydrogen system with photocatalyst suspension as optical liquid filter," Renewable Energy, Elsevier, vol. 194(C), pages 1221-1232.
- Hong, Wenpeng & Li, Boyu & Li, Haoran & Niu, Xiaojuan & Li, Yan & Lan, Jingrui, 2022. "Recent progress in thermal energy recovery from the decoupled photovoltaic/thermal system equipped with spectral splitters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Zhao, Xiaobo & Han, Xinyue & Yao, Yiping & Huang, Ju, 2022. "Stability investigation of propylene glycol-based Ag@SiO2 nanofluids and their performance in spectral splitting photovoltaic/thermal systems," Energy, Elsevier, vol. 238(PC).
- Huang, Gan & Wang, Kai & Curt, Sara Riera & Franchetti, Benjamin & Pesmazoglou, Ioannis & Markides, Christos N., 2021. "On the performance of concentrating fluid-based spectral-splitting hybrid PV-thermal (PV-T) solar collectors," Renewable Energy, Elsevier, vol. 174(C), pages 590-605.
- Mojumder, Juwel C. & Aminossadati, Saiied M. & Leonardi, Christopher R., 2024. "Numerical analysis of a hybrid SF-CPV/T collector using spectral-filter nanofluids suitable for a high operating temperature range," Renewable Energy, Elsevier, vol. 230(C).
- Han, Xinyue & Zhao, Xiaobo & Huang, Ju & Qu, Jian, 2022. "Optical properties optimization of plasmonic nanofluid to enhance the performance of spectral splitting photovoltaic/thermal systems," Renewable Energy, Elsevier, vol. 188(C), pages 573-587.
- Zhu, Yizhou & Ma, Benchi & Zeng, Zilong & Lou, Hewei & He, Yi & Jing, Dengwei, 2022. "Solar collector tube as secondary concentrator for significantly enhanced optical performance of LCPV/T system," Renewable Energy, Elsevier, vol. 193(C), pages 418-433.
- Liang, Huaxu & Wang, Fuqiang & Yang, Luwei & Cheng, Ziming & Shuai, Yong & Tan, Heping, 2021. "Progress in full spectrum solar energy utilization by spectral beam splitting hybrid PV/T system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
- Sripadmanabhan Indira, Sridhar & Aravind Vaithilingam, Chockalingam & Narasingamurthi, Kulasekharan & Sivasubramanian, Ramsundar & Chong, Kok-Keong & Saidur, R., 2022. "Mathematical modelling, performance evaluation and exergy analysis of a hybrid photovoltaic/thermal-solar thermoelectric system integrated with compound parabolic concentrator and parabolic trough con," Applied Energy, Elsevier, vol. 320(C).
- Islam, Kazi & Riggs, Brian & Ji, Yaping & Robertson, John & Spitler, Christopher & Romanin, Vince & Codd, Daniel & Escarra, Matthew D., 2019. "Transmissive microfluidic active cooling for concentrator photovoltaics," Applied Energy, Elsevier, vol. 236(C), pages 906-915.
- Renzi, Massimiliano & Cioccolanti, Luca & Barazza, Giorgio & Egidi, Lorenzo & Comodi, Gabriele, 2017. "Design and experimental test of refractive secondary optics on the electrical performance of a 3-junction cell used in CPV systems," Applied Energy, Elsevier, vol. 185(P1), pages 233-243.
- Robertson, John & Riggs, Brian & Islam, Kazi & Ji, Yaping Vera & Spitler, Christopher M. & Gupta, Naman & Krut, Dimitri & Ermer, Jim & Miller, Fletcher & Codd, Daniel & Escarra, Matthew, 2019. "Field testing of a spectrum-splitting transmissive concentrator photovoltaic module," Renewable Energy, Elsevier, vol. 139(C), pages 806-814.
- Isaac Holmes-Gentle & Saurabh Tembhurne & Clemens Suter & Sophia Haussener, 2023. "Kilowatt-scale solar hydrogen production system using a concentrated integrated photoelectrochemical device," Nature Energy, Nature, vol. 8(6), pages 586-596, June.
- Pan, Hong-Yu & Chen, Xue & Xia, Xin-Lin, 2022. "A review on the evolvement of optical-frequency filtering in photonic devices in 2016–2021," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
- Qiu, Huichong & Liu, Hui & Xia, Qi & Lin, Zihan & Chen, Chen, 2024. "A spectral splitting CPV/T hybrid system based on wave-selecting filter coated compound parabolic concentrator and linear Fresnel reflector concentrator," Renewable Energy, Elsevier, vol. 226(C).
- Abdelrazik, A.S. & Saidur, R. & Al-Sulaiman, F.A., 2021. "Investigation of the performance of a hybrid PV/thermal system using water/silver nanofluid-based optical filter," Energy, Elsevier, vol. 215(PB).
- Huang, Ju & Han, Xinyue & Zhao, Xiaobo & Khosa, Azhar Abbas & Meng, Chunfeng, 2022. "The stability, optical behavior optimization of Ag@SiO2 nanofluids and their application in spectral splitting photovoltaic/thermal receivers," Renewable Energy, Elsevier, vol. 190(C), pages 865-878.
- Cameron, William James & Reddy, K. Srinivas & Mallick, Tapas Kumar, 2022. "Review of high concentration photovoltaic thermal hybrid systems for highly efficient energy cogeneration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
More about this item
Keywords
Concentrated photovoltaic/thermal system; Hydrogen; Secondary optical element; Spectral beam-splitting filter;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:334:y:2023:i:c:s0306261923000971. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.