IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms13237.html
   My bibliography  Save this article

Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%

Author

Listed:
  • Jieyang Jia

    (Stanford University)

  • Linsey C. Seitz

    (Stanford University)

  • Jesse D. Benck

    (Stanford University)

  • Yijie Huo

    (Stanford University)

  • Yusi Chen

    (Stanford University)

  • Jia Wei Desmond Ng

    (Stanford University
    Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research)

  • Taner Bilir

    (Solar Junction)

  • James S. Harris

    (Stanford University)

  • Thomas F. Jaramillo

    (Stanford University)

Abstract

Hydrogen production via electrochemical water splitting is a promising approach for storing solar energy. For this technology to be economically competitive, it is critical to develop water splitting systems with high solar-to-hydrogen (STH) efficiencies. Here we report a photovoltaic-electrolysis system with the highest STH efficiency for any water splitting technology to date, to the best of our knowledge. Our system consists of two polymer electrolyte membrane electrolysers in series with one InGaP/GaAs/GaInNAsSb triple-junction solar cell, which produces a large-enough voltage to drive both electrolysers with no additional energy input. The solar concentration is adjusted such that the maximum power point of the photovoltaic is well matched to the operating capacity of the electrolysers to optimize the system efficiency. The system achieves a 48-h average STH efficiency of 30%. These results demonstrate the potential of photovoltaic-electrolysis systems for cost-effective solar energy storage.

Suggested Citation

  • Jieyang Jia & Linsey C. Seitz & Jesse D. Benck & Yijie Huo & Yusi Chen & Jia Wei Desmond Ng & Taner Bilir & James S. Harris & Thomas F. Jaramillo, 2016. "Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%," Nature Communications, Nature, vol. 7(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13237
    DOI: 10.1038/ncomms13237
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms13237
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms13237?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohsen Fallah Vostakola & Babak Salamatinia & Bahman Amini Horri, 2022. "A Review on Recent Progress in the Integrated Green Hydrogen Production Processes," Energies, MDPI, vol. 15(3), pages 1-41, February.
    2. Jiang, Jing & Chen, Mei & Luo, Yang & Xu, Ying & Ai, Lunhong, 2022. "One stone, two birds: Multifunctional hierarchical iron sulfide nanosheet arrays enabling self-powered solar thermoelectric water electrolysis," Renewable Energy, Elsevier, vol. 195(C), pages 230-237.
    3. Ramakrishnan, Shanmugam & Delpisheh, Mostafa & Convery, Caillean & Niblett, Daniel & Vinothkannan, Mohanraj & Mamlouk, Mohamed, 2024. "Offshore green hydrogen production from wind energy: Critical review and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    4. Ma, Ben-Chi & Lin, Hua & Zhu, Yizhou & Zeng, Zilong & Geng, Jiafeng & Jing, Dengwei, 2022. "A new Concentrated Photovoltaic Thermal-Hydrogen system with photocatalyst suspension as optical liquid filter," Renewable Energy, Elsevier, vol. 194(C), pages 1221-1232.
    5. Xinyi Zhang & Michael Schwarze & Reinhard Schomäcker & Roel Krol & Fatwa F. Abdi, 2023. "Life cycle net energy assessment of sustainable H2 production and hydrogenation of chemicals in a coupled photoelectrochemical device," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Lucey, Brian & Yahya, Muhammad & Khoja, Layla & Uddin, Gazi Salah & Ahmed, Ali, 2024. "Interconnectedness and risk profile of hydrogen against major asset classes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    7. Das, Jagat & Sahu, Partha Pratim, 2021. "Water splitting with screw pitched cylindrical electrode and Fe(OH)2 catalyst under 1.4 V," Renewable Energy, Elsevier, vol. 165(P1), pages 525-532.
    8. Sui, Jiyuan & Chen, Zhennan & Wang, Chen & Wang, Yueyang & Liu, Jianhong & Li, Wenjia, 2020. "Efficient hydrogen production from solar energy and fossil fuel via water-electrolysis and methane-steam-reforming hybridization," Applied Energy, Elsevier, vol. 276(C).
    9. Magnin, Jean-Pierre & Deseure, Jonathan, 2019. "Hydrogen generation in a pressurized photobioreactor: Unexpected enhancement of biohydrogen production by the phototrophic bacterium Rhodobacter capsulatus," Applied Energy, Elsevier, vol. 239(C), pages 635-643.
    10. Junfen Li & Hang Guo & Qingpeng Meng & Yuting Wu & Fang Ye & Chongfang Ma, 2020. "Thermodynamic Analysis and Comparison of Two Small-Scale Solar Electrical Power Generation Systems," Sustainability, MDPI, vol. 12(24), pages 1-19, December.
    11. Hamdani, I.R. & Bhaskarwar, A.N., 2021. "Recent progress in material selection and device designs for photoelectrochemical water-splitting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    12. Ya Liu & Dan Lei & Xiaoqi Guo & Tengfei Ma & Feng Wang & Yubin Chen, 2022. "Scale Effect on Producing Gaseous and Liquid Chemical Fuels via CO 2 Reduction," Energies, MDPI, vol. 15(1), pages 1-9, January.
    13. Corzo Santamaría, Teresa & Martin-Bujack, Karin & Portela, Jose & Sáenz-Diez, Rocio, 2022. "Early market efficiency testing among hydrogen players," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 723-742.
    14. Abdin, Zainul & Zafaranloo, Ali & Rafiee, Ahmad & Mérida, Walter & Lipiński, Wojciech & Khalilpour, Kaveh R., 2020. "Hydrogen as an energy vector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    15. Isaac Holmes-Gentle & Saurabh Tembhurne & Clemens Suter & Sophia Haussener, 2023. "Kilowatt-scale solar hydrogen production system using a concentrated integrated photoelectrochemical device," Nature Energy, Nature, vol. 8(6), pages 586-596, June.
    16. Hoang, Anh Tuan & Pandey, Ashok & Martinez De Osés, Francisco Javier & Chen, Wei-Hsin & Said, Zafar & Ng, Kim Hoong & Ağbulut, Ümit & Tarełko, Wiesław & Ölçer, Aykut I. & Nguyen, Xuan Phuong, 2023. "Technological solutions for boosting hydrogen role in decarbonization strategies and net-zero goals of world shipping: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    17. Zhu, Yizhou & Ma, Benchi & He, Baichuan & Ma, Xinyu & Jing, Dengwei, 2023. "Liquid spherical lens as an effective auxiliary optical unit for CPV/T system with remarkable hydrogen production efficiency," Applied Energy, Elsevier, vol. 334(C).
    18. Keisuke Obata & Michael Schwarze & Tabea A. Thiel & Xinyi Zhang & Babu Radhakrishnan & Ibbi Y. Ahmet & Roel Krol & Reinhard Schomäcker & Fatwa F. Abdi, 2023. "Solar-driven upgrading of biomass by coupled hydrogenation using in situ (photo)electrochemically generated H2," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13237. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.