IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v333y2023ics0306261922018761.html
   My bibliography  Save this article

Energy audit and management of an industrial site based on energy efficiency, economic, and environmental analysis

Author

Listed:
  • Bosu, Issa
  • Mahmoud, Hatem
  • Hassan, Hamdy

Abstract

This study presents an energy audit and management for an industrial site in Borg El-Arab City, Egypt. Notably, the investigated industrial site falls in the category of small and medium-sized enterprises (SMEs), which are characterized by a high share of final energy use and possess a significant untapped energy-efficiency potential. In this work, potential sources of energy wastage in the facility have been investigated following a unique energy audit and analysis road map. Furthermore, tailored energy efficiency recommendations and effective energy management practices have been proffered for the various industrial equipment available for the first time. Besides, the proposed action plans are economically evaluated using the payback method and their environmental benefits are assessed accordingly. The results show that a proposed expansion of the PV system would produce 676.62 MWh/year and satisfy about 50.95 % of the factory’s annual electricity consumption. The renewable energy system presents an investment cost of $124,115 with an attractive payback period of about 3 years alongside curbing 293 tons of CO2 emissions annually. In addition, the installation of variable speed drives in the motor systems would save about 48.477 MWh/year with a payback period of 1.73 years and mitigate about 21 t of CO2 annually. Nevertheless, thermal insulation of the mold assembly using thermal boards and incorporating an air gap in the mold assembly design results in energy savings of about 319 MWh per year. The energy management of fans, compressors, and lights demonstrates annual energy savings of 121.461 MWh, 14.88 MWh, and 32.154 MWh, respectively. Notwithstanding, replacing fossil fuel-based forklifts with electric forklifts leads to an investment cost of $32,220 with an associated payback period of 5.74 years. Noteworthy, the energy audit and management herein present energy savings and CO2 emissions mitigations of 535.971 MWh and 232 t annually, respectively. Evidently, the energy audit and management performed will act as a guide for relevant decision-makers towards energy efficiency improvements, consequently achieving economic savings and limiting the carbon footprint.

Suggested Citation

  • Bosu, Issa & Mahmoud, Hatem & Hassan, Hamdy, 2023. "Energy audit and management of an industrial site based on energy efficiency, economic, and environmental analysis," Applied Energy, Elsevier, vol. 333(C).
  • Handle: RePEc:eee:appene:v:333:y:2023:i:c:s0306261922018761
    DOI: 10.1016/j.apenergy.2022.120619
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922018761
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120619?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anvari, Simin & Mahian, Omid & Taghavifar, Hadi & Wongwises, Somchai & Desideri, Umberto, 2020. "4E analysis of a modified multigeneration system designed for power, heating/cooling, and water desalination," Applied Energy, Elsevier, vol. 270(C).
    2. Moya, Diego & Torres, Roberto & Stegen, Sascha, 2016. "Analysis of the Ecuadorian energy audit practices: A review of energy efficiency promotion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 289-296.
    3. Thirugnanasambandam, M. & Hasanuzzaman, M. & Saidur, R. & Ali, M.B. & Rajakarunakaran, S. & Devaraj, D. & Rahim, N.A., 2011. "Analysis of electrical motors load factors and energy savings in an Indian cement industry," Energy, Elsevier, vol. 36(7), pages 4307-4314.
    4. Kanchiralla, Fayas Malik & Jalo, Noor & Thollander, Patrik & Andersson, Maria & Johnsson, Simon, 2021. "Energy use categorization with performance indicators for the food industry and a conceptual energy planning framework," Applied Energy, Elsevier, vol. 304(C).
    5. Atalay, Halil & Cankurtaran, Eda, 2021. "Energy, exergy, exergoeconomic and exergo-environmental analyses of a large scale solar dryer with PCM energy storage medium," Energy, Elsevier, vol. 216(C).
    6. Catrini, P. & Panno, D. & Cardona, F. & Piacentino, A., 2020. "Characterization of cooling loads in the wine industry and novel seasonal indicator for reliable assessment of energy saving through retrofit of chillers," Applied Energy, Elsevier, vol. 266(C).
    7. Monjurul Hasan, A S M & Trianni, Andrea & Shukla, Nagesh & Katic, Mile, 2022. "A novel characterization based framework to incorporate industrial energy management services," Applied Energy, Elsevier, vol. 313(C).
    8. Worrell, Ernst & Laitner, John A & Ruth, Michael & Finman, Hodayah, 2003. "Productivity benefits of industrial energy efficiency measures," Energy, Elsevier, vol. 28(11), pages 1081-1098.
    9. Zuberi, M. Jibran S. & Tijdink, Anton & Patel, Martin K., 2017. "Techno-economic analysis of energy efficiency improvement in electric motor driven systems in Swiss industry," Applied Energy, Elsevier, vol. 205(C), pages 85-104.
    10. Su, Te-Li & Chan, David Yih-Liang & Hung, Ching-Yuan & Hong, Gui-Bing, 2013. "The status of energy conservation in Taiwan's cement industry," Energy Policy, Elsevier, vol. 60(C), pages 481-486.
    11. Boharb, A. & Allouhi, A. & Saidur, R. & Kousksou, T. & Jamil, A. & Mourad, Y. & Benbassou, A., 2016. "Auditing and analysis of energy consumption of an industrial site in Morocco," Energy, Elsevier, vol. 101(C), pages 332-342.
    12. Kubule, Anna & Ločmelis, Kristaps & Blumberga, Dagnija, 2020. "Analysis of the results of national energy audit program in Latvia," Energy, Elsevier, vol. 202(C).
    13. Andersson, Elias & Karlsson, Magnus & Thollander, Patrik & Paramonova, Svetlana, 2018. "Energy end-use and efficiency potentials among Swedish industrial small and medium-sized enterprises – A dataset analysis from the national energy audit program," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 165-177.
    14. Saidur, R. & Mekhilef, S., 2010. "Energy use, energy savings and emission analysis in the Malaysian rubber producing industries," Applied Energy, Elsevier, vol. 87(8), pages 2746-2758, August.
    15. Backlund, Sandra & Thollander, Patrik, 2015. "Impact after three years of the Swedish energy audit program," Energy, Elsevier, vol. 82(C), pages 54-60.
    16. Wang, Yihan & Chen, Chen & Tao, Yuan & Wen, Zongguo & Chen, Bin & Zhang, Hong, 2019. "A many-objective optimization of industrial environmental management using NSGA-III: A case of China’s iron and steel industry," Applied Energy, Elsevier, vol. 242(C), pages 46-56.
    17. Cagno, Enrico & Franzò, Simone & Storoni, Elena & Trianni, Andrea, 2022. "A characterisation framework of energy services offered by energy service companies," Applied Energy, Elsevier, vol. 324(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Altamash Ahmad Baig & Alan S. Fung & Rakesh Kumar, 2024. "Auditing and Analysis of Natural Gas Consumptions in Small- and Medium-Sized Industrial Facilities in the Greater Toronto Area for Energy Conservation Opportunities," Energies, MDPI, vol. 17(7), pages 1-19, April.
    2. Jenny Ibarguen & Rosaura Castrillón, 2024. "ISO 50002 and ITS Contribution to the Decarbonization of SMES: Case Study," International Journal of Energy Economics and Policy, Econjournals, vol. 14(1), pages 224-244, January.
    3. Andrzej Pacana & Karolina Czerwińska & Grzegorz Ostasz, 2023. "Analysis of the Level of Efficiency of Control Methods in the Context of Energy Intensity," Energies, MDPI, vol. 16(8), pages 1-26, April.
    4. Stefano Bigiotti & Carlo Costantino & Alvaro Marucci, 2024. "Agritourism Facilities in the Era of the Green Economy: A Combined Energy Audit and Life Cycle Assessment Approach for the Sustainable Regeneration of Rural Structures," Energies, MDPI, vol. 17(5), pages 1-26, February.
    5. Bosu, Issa & Mahmoud, Hatem & Hassan, Hamdy, 2023. "Energy audit, techno-economic, and environmental assessment of integrating solar technologies for energy management in a university residential building: A case study," Applied Energy, Elsevier, vol. 341(C).
    6. Eirini Stavropoulou & Konstantinos Spinthiropoulos & Konstantina Ragazou & Christos Papademetriou & Ioannis Passas, 2023. "Green Balanced Scorecard: A Tool of Sustainable Information Systems for an Energy Efficient Business," Energies, MDPI, vol. 16(18), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Trianni, Andrea & Cagno, Enrico & Accordini, Davide, 2019. "Energy efficiency measures in electric motors systems: A novel classification highlighting specific implications in their adoption," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    2. Jiang, Qibo & Tan, Qingmei, 2021. "National environmental audit and improvement of regional energy efficiency from the perspective of institution and development differences," Energy, Elsevier, vol. 217(C).
    3. Fábio de Oliveira Neves & Henrique Ewbank & José Arnaldo Frutuoso Roveda & Andrea Trianni & Fernando Pinhabel Marafão & Sandra Regina Monteiro Masalskiene Roveda, 2022. "Economic and Production-Related Implications for Industrial Energy Efficiency: A Logistic Regression Analysis on Cross-Cutting Technologies," Energies, MDPI, vol. 15(4), pages 1-19, February.
    4. Kubule, Anna & Ločmelis, Kristaps & Blumberga, Dagnija, 2020. "Analysis of the results of national energy audit program in Latvia," Energy, Elsevier, vol. 202(C).
    5. Matteo Piccioni & Fabrizio Martini & Chiara Martini & Claudia Toro, 2024. "Evaluation of Energy Performance Indicators and Energy Saving Opportunities for the Italian Rubber Manufacturing Industry," Energies, MDPI, vol. 17(7), pages 1-23, March.
    6. Daniela Artemisa Calu & Adriana Ana Maria Davidescu & Alina Mihaela Irimescu & Corina-Graziella Batca Dumitru & Viorel Avram, 2023. "Implementation of Energy Efficiency Improvement Measures in Romania and the Role of Professional Accountants," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 25(63), pages 479-479, April.
    7. Andersson, Elias & Karlsson, Magnus & Thollander, Patrik & Paramonova, Svetlana, 2018. "Energy end-use and efficiency potentials among Swedish industrial small and medium-sized enterprises – A dataset analysis from the national energy audit program," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 165-177.
    8. Andrea Trianni & Davide Accordini & Enrico Cagno, 2020. "Identification and Categorization of Factors Affecting the Adoption of Energy Efficiency Measures within Compressed Air Systems," Energies, MDPI, vol. 13(19), pages 1-51, October.
    9. Krutwig Michael C. & Tanțău Adrian, 2018. "Obligatory versus voluntary energy audits: are there differences in quality?," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 12(1), pages 522-532, May.
    10. Nehler, Therese, 2018. "Linking energy efficiency measures in industrial compressed air systems with non-energy benefits – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 72-87.
    11. Navid Rezaei & Abdollah Ahmadi & Mohammadhossein Deihimi, 2022. "A Comprehensive Review of Demand-Side Management Based on Analysis of Productivity: Techniques and Applications," Energies, MDPI, vol. 15(20), pages 1-28, October.
    12. Boharb, A. & Allouhi, A. & Saidur, R. & Kousksou, T. & Jamil, A. & Mourad, Y. & Benbassou, A., 2016. "Auditing and analysis of energy consumption of an industrial site in Morocco," Energy, Elsevier, vol. 101(C), pages 332-342.
    13. Ahmed, Ferdous & Al Amin, Abul Quasem & Hasanuzzaman, M. & Saidur, R., 2013. "Alternative energy resources in Bangladesh and future prospect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 698-707.
    14. Bandeiras, F. & Gomes, M. & Coelho, P. & Fernandes, J., 2020. "Towards net zero energy in industrial and commercial buildings in Portugal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    15. Cagno, Enrico & Accordini, Davide & Trianni, Andrea & Katic, Mile & Ferrari, Nicolò & Gambaro, Federico, 2022. "Understanding the impacts of energy efficiency measures on a Company’s operational performance: A new framework," Applied Energy, Elsevier, vol. 328(C).
    16. Johnsson, Simon & Andersson, Elias & Thollander, Patrik & Karlsson, Magnus, 2019. "Energy savings and greenhouse gas mitigation potential in the Swedish wood industry," Energy, Elsevier, vol. 187(C).
    17. Fredrik von Malmborg & Peter A. Strachan, 2023. "Advocacy Coalitions and Paths to Policy Change for Promoting Energy Efficiency in European Industry," Energies, MDPI, vol. 16(9), pages 1-21, April.
    18. Joakim Haraldsson & Simon Johnsson & Patrik Thollander & Magnus Wallén, 2021. "Taxonomy, Saving Potentials and Key Performance Indicators for Energy End-Use and Greenhouse Gas Emissions in the Aluminium Industry and Aluminium Casting Foundries," Energies, MDPI, vol. 14(12), pages 1-26, June.
    19. Zuberi, M. Jibran S. & Santoro, Marina & Eberle, Armin & Bhadbhade, Navdeep & Sulzer, Sabine & Wellig, Beat & Patel, Martin K., 2020. "A detailed review on current status of energy efficiency improvement in the Swiss industry sector," Energy Policy, Elsevier, vol. 137(C).
    20. Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:333:y:2023:i:c:s0306261922018761. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.