IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v341y2023ics0306261923005056.html
   My bibliography  Save this article

Energy audit, techno-economic, and environmental assessment of integrating solar technologies for energy management in a university residential building: A case study

Author

Listed:
  • Bosu, Issa
  • Mahmoud, Hatem
  • Hassan, Hamdy

Abstract

This study presents the results of an energy audit and management performed on a university residential building in Borg El-Arab City, Egypt. The building’s energy consumption, areas of energy wastage, and energy-saving opportunities were investigated, and the corresponding energy metrics were quantified accordingly. Firstly, an energy consumption is estimated based on the building's electricity bills, meter measurements, and survey. Then, the energy consumption is analyzed and evaluated. Subsequently, the feasibility of integrating solar technologies (i.e., photovoltaics and domestic water heating) into buildings is appraised from techno-economic and environmental perspectives. The study employs ASHRAE Level 1 and 2 guidelines for conducting energy audits. The results show that electricity consumption is highest in air conditioning units (which consume ∼62%), followed by socket loads (∼25%), and lastly, lights (∼13%). Detailed analysis of the energy-use characteristics of the building revealed the mismanagement of electricity. Through light retrofits such as replacing the incandescent bulbs with LED bulbs, adopting sensory lights, and delamping, the building would save 4,432.6 kWh annually. Additionally, changing the AC unit type from non-inverter to inverter type would save approximately 61,194 kWh/year, representing 22.96% energy savings, with a payback period of 8.6 years. Overall, the proposed energy conservation measures will mitigate 30.8 tons of CO2 per year. Furthermore, incorporating PV and SWH systems will lead to annual energy contributions of 79,820 kWh and 38,048 kWh, with payback periods of 3.77 years and 2.49 years, respectively. Notably, the solar technologies will altogether abate approximately 91.5 tons of CO2 and provide a carbon credit gain of $1,830 annually.

Suggested Citation

  • Bosu, Issa & Mahmoud, Hatem & Hassan, Hamdy, 2023. "Energy audit, techno-economic, and environmental assessment of integrating solar technologies for energy management in a university residential building: A case study," Applied Energy, Elsevier, vol. 341(C).
  • Handle: RePEc:eee:appene:v:341:y:2023:i:c:s0306261923005056
    DOI: 10.1016/j.apenergy.2023.121141
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923005056
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121141?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yousef, Mohamed S. & Sharaf, Mohamed & Huzayyin, A.S., 2022. "Energy, exergy, economic, and enviroeconomic assessment of a photovoltaic module incorporated with a paraffin-metal foam composite: An experimental study," Energy, Elsevier, vol. 238(PB).
    2. Katarzyna Ratajczak & Katarzyna Michalak & Michał Narojczyk & Łukasz Amanowicz, 2021. "Real Domestic Hot Water Consumption in Residential Buildings and Its Impact on Buildings’ Energy Performance—Case Study in Poland," Energies, MDPI, vol. 14(16), pages 1-22, August.
    3. Bosu, Issa & Mahmoud, Hatem & Hassan, Hamdy, 2023. "Energy audit and management of an industrial site based on energy efficiency, economic, and environmental analysis," Applied Energy, Elsevier, vol. 333(C).
    4. Attia, Shady & Evrard, Arnaud & Gratia, Elisabeth, 2012. "Development of benchmark models for the Egyptian residential buildings sector," Applied Energy, Elsevier, vol. 94(C), pages 270-284.
    5. Cristea, Ciprian & Cristea, Maria & Birou, Iulian & Tîrnovan, Radu-Adrian, 2020. "Economic assessment of grid-connected residential solar photovoltaic systems introduced under Romania’s new regulation," Renewable Energy, Elsevier, vol. 162(C), pages 13-29.
    6. Lin, W.M. & Chang, K.C. & Chung, K.M., 2015. "Payback period for residential solar water heaters in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 901-906.
    7. Elghamry, Rania & Hassan, Hamdy, 2020. "Impact a combination of geothermal and solar energy systems on building ventilation, heating and output power: Experimental study," Renewable Energy, Elsevier, vol. 152(C), pages 1403-1413.
    8. Omar, Moien A. & Mahmoud, Marwan M., 2018. "Grid connected PV- home systems in Palestine: A review on technical performance, effects and economic feasibility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2490-2497.
    9. Atalay, Halil & Cankurtaran, Eda, 2021. "Energy, exergy, exergoeconomic and exergo-environmental analyses of a large scale solar dryer with PCM energy storage medium," Energy, Elsevier, vol. 216(C).
    10. Ammar Hamoud Ahmad Dehwah & Muhammad Asif & Ismail Mohammad Budaiwi & Adel Alshibani, 2020. "Techno-Economic Assessment of Rooftop PV Systems in Residential Buildings in Hot–Humid Climates," Sustainability, MDPI, vol. 12(23), pages 1-19, December.
    11. Ying Ma & Chen Chen & Lifeng Xi, 2022. "Average Fermat Distance Of A Self-Similar Fractal Tree," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 30(04), pages 1-10, June.
    12. Abdelshafy, Alaaeldin M. & Jurasz, Jakub & Hassan, Hamdy & Mohamed, Abdelfatah M., 2020. "Optimized energy management strategy for grid connected double storage (pumped storage-battery) system powered by renewable energy resources," Energy, Elsevier, vol. 192(C).
    13. Kaundinya, Deepak Paramashivan & Balachandra, P. & Ravindranath, N.H., 2009. "Grid-connected versus stand-alone energy systems for decentralized power--A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2041-2050, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thakare, Hitesh R. & Daspute, Pramod, 2024. "Enhancing energy conservation in power generation in a coal fired thermal power plant through comprehensive energy audit," Energy, Elsevier, vol. 301(C).
    2. Rehman, Anis Ur & Ullah, Zia & Shafiq, Aqib & Hasanien, Hany M. & Luo, Peng & Badshah, Fazal, 2023. "Load management, energy economics, and environmental protection nexus considering PV-based EV charging stations," Energy, Elsevier, vol. 281(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kurnia, Jundika C. & Putra, Zulfan A. & Muraza, Oki & Ghoreishi-Madiseh, Seyed Ali & Sasmito, Agus P., 2021. "Numerical evaluation, process design and techno-economic analysis of geothermal energy extraction from abandoned oil wells in Malaysia," Renewable Energy, Elsevier, vol. 175(C), pages 868-879.
    2. Ahmad Alzahrani & Senthil Kumar Ramu & Gunapriya Devarajan & Indragandhi Vairavasundaram & Subramaniyaswamy Vairavasundaram, 2022. "A Review on Hydrogen-Based Hybrid Microgrid System: Topologies for Hydrogen Energy Storage, Integration, and Energy Management with Solar and Wind Energy," Energies, MDPI, vol. 15(21), pages 1-32, October.
    3. Amit Kumer Podder & Anik Kumar Das & Eklas Hossain & Nallapaneni Manoj Kumar & Naruttam Kumar Roy & Hassan Haes Alhelou & Alagar Karthick & Amer Al-Hinai, 2021. "Integrated modeling and feasibility analysis of a rooftop photovoltaic systems for an academic building in Bangladesh [Techno-economic impacts analysis of a hybrid grid connected energy system appl," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 16(4), pages 1317-1327.
    4. Gobong Choi & Eunnyeong Heo & Chul-Yong Lee, 2018. "Dynamic Economic Analysis of Subsidies for New and Renewable Energy in South Korea," Sustainability, MDPI, vol. 10(6), pages 1-19, June.
    5. Ephraim Bonah Agyekum & Usman Mehmood & Salah Kamel & Mokhtar Shouran & Elmazeg Elgamli & Tomiwa Sunday Adebayo, 2022. "Technical Performance Prediction and Employment Potential of Solar PV Systems in Cold Countries," Sustainability, MDPI, vol. 14(6), pages 1-21, March.
    6. Evan Eduard Susanto & Agus Saptoro & Perumal Kumar & Angnes Ngieng Tze Tiong & Aditya Putranto & Suherman Suherman, 2024. "7E + Q analysis: a new multi-dimensional assessment tool of solar dryer for food and agricultural products," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 16363-16385, July.
    7. Ohijeagbon, O.D. & Ajayi, Oluseyi O., 2015. "Solar regime and LVOE of PV embedded generation systems in Nigeria," Renewable Energy, Elsevier, vol. 78(C), pages 226-235.
    8. Andrzej Pacana & Karolina Czerwińska & Grzegorz Ostasz, 2023. "Analysis of the Level of Efficiency of Control Methods in the Context of Energy Intensity," Energies, MDPI, vol. 16(8), pages 1-26, April.
    9. Velo, R. & Osorio, L. & Fernández, M.D. & Rodríguez, M.R., 2014. "An economic analysis of a stand-alone and grid-connected cattle farm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 883-890.
    10. Ahlborg, Helene & Hammar, Linus, 2014. "Drivers and barriers to rural electrification in Tanzania and Mozambique – Grid-extension, off-grid, and renewable energy technologies," Renewable Energy, Elsevier, vol. 61(C), pages 117-124.
    11. Fuster-Palop, Enrique & Prades-Gil, Carlos & Masip, X. & Viana-Fons, Joan D. & Payá, Jorge, 2021. "Innovative regression-based methodology to assess the techno-economic performance of photovoltaic installations in urban areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    12. Choragudi, Sravanthi, 2013. "Off-grid solar lighting systems: A way align India's sustainable and inclusive development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 890-899.
    13. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
    14. Radhi, Hassan & Sharples, Stephen, 2013. "Quantifying the domestic electricity consumption for air-conditioning due to urban heat islands in hot arid regions," Applied Energy, Elsevier, vol. 112(C), pages 371-380.
    15. Brandão de Vasconcelos, Ana & Pinheiro, Manuel Duarte & Manso, Armando & Cabaço, António, 2015. "A Portuguese approach to define reference buildings for cost-optimal methodologies," Applied Energy, Elsevier, vol. 140(C), pages 316-328.
    16. Rawat, Rahul & Kaushik, S.C. & Lamba, Ravita, 2016. "A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1506-1519.
    17. Levin, Todd & Thomas, Valerie M., 2012. "Least-cost network evaluation of centralized and decentralized contributions to global electrification," Energy Policy, Elsevier, vol. 41(C), pages 286-302.
    18. Harrington, Elise & Athavankar, Ameya & Hsu, David, 2020. "Variation in rural household energy transitions for basic lighting in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    19. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Mikulik, Jerzy, 2021. "A hybrid method for scenario-based techno-economic-environmental analysis of off-grid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    20. Weinand, Jann & Scheller, Fabian Johannes & McKenna, Russell, 2020. "Reviewing energy system modelling of decentralized energy autonomy," Working Paper Series in Production and Energy 41, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:341:y:2023:i:c:s0306261923005056. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.