IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v187y2019ics0360544219316032.html
   My bibliography  Save this article

Energy savings and greenhouse gas mitigation potential in the Swedish wood industry

Author

Listed:
  • Johnsson, Simon
  • Andersson, Elias
  • Thollander, Patrik
  • Karlsson, Magnus

Abstract

Improving energy efficiency in industry is recognized as one of the most crucial actions for mitigating climate change. The lack of knowledge regarding energy end-use makes it difficult for companies to know in which processes the highest energy efficiency potential is located. Using a case study design, the paper provides a taxonomy for energy end-use and greenhouse gas (GHG) emissions on a process and energy carrier level. It can be seen that drying of wood is the largest energy using and GHG emitting process in the studied companies. The paper also investigates applied and potentially viable energy key performance indicators (KPIs). Suggestions for improving energy KPIs within the wood industry include separating figures for different wood varieties and different end-products and distinguishing between different drying kiln technologies. Finally, the paper presents the major energy saving and carbon mitigating measures by constructing conservation supply curves and marginal abatement cost curves. The energy saving potential found in the studied companies indicates that significant improvements might be achieved throughout the Swedish wood industry. Even though the scope of this paper is the Swedish wood industry, several of the findings are likely to be relevant in other countries with a prominent wood industry.

Suggested Citation

  • Johnsson, Simon & Andersson, Elias & Thollander, Patrik & Karlsson, Magnus, 2019. "Energy savings and greenhouse gas mitigation potential in the Swedish wood industry," Energy, Elsevier, vol. 187(C).
  • Handle: RePEc:eee:energy:v:187:y:2019:i:c:s0360544219316032
    DOI: 10.1016/j.energy.2019.115919
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219316032
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.115919?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Worrell, Ernst & Martin, Nathan & Price, Lynn, 2000. "Potentials for energy efficiency improvement in the US cement industry," Energy, Elsevier, vol. 25(12), pages 1189-1214.
    2. Hasanbeigi, Ali & Menke, Christoph & Therdyothin, Apichit, 2010. "The use of conservation supply curves in energy policy and economic analysis: The case study of Thai cement industry," Energy Policy, Elsevier, vol. 38(1), pages 392-405, January.
    3. Xu, Tengfang & Flapper, Joris & Kramer, Klaas Jan, 2009. "Characterization of energy use and performance of global cheese processing," Energy, Elsevier, vol. 34(11), pages 1993-2000.
    4. Fleiter, Tobias & Hirzel, Simon & Worrell, Ernst, 2012. "The characteristics of energy-efficiency measures – a neglected dimension," Energy Policy, Elsevier, vol. 51(C), pages 502-513.
    5. Trianni, Andrea & Cagno, Enrico & De Donatis, Alessio, 2014. "A framework to characterize energy efficiency measures," Applied Energy, Elsevier, vol. 118(C), pages 207-220.
    6. Andersson, Elias & Karlsson, Magnus & Thollander, Patrik & Paramonova, Svetlana, 2018. "Energy end-use and efficiency potentials among Swedish industrial small and medium-sized enterprises – A dataset analysis from the national energy audit program," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 165-177.
    7. Fleiter, Tobias & Fehrenbach, Daniel & Worrell, Ernst & Eichhammer, Wolfgang, 2012. "Energy efficiency in the German pulp and paper industry – A model-based assessment of saving potentials," Energy, Elsevier, vol. 40(1), pages 84-99.
    8. Anderson, Jan-Olof & Westerlund, Lars, 2014. "Improved energy efficiency in sawmill drying system," Applied Energy, Elsevier, vol. 113(C), pages 891-901.
    9. Backlund, Sandra & Thollander, Patrik, 2015. "Impact after three years of the Swedish energy audit program," Energy, Elsevier, vol. 82(C), pages 54-60.
    10. Anderson, Jan-Olof & Toffolo, Andrea, 2013. "Improving energy efficiency of sawmill industrial sites by integration with pellet and CHP plants," Applied Energy, Elsevier, vol. 111(C), pages 791-800.
    11. Rietbergen, Martijn G. & Blok, Kornelis, 2010. "Setting SMART targets for industrial energy use and industrial energy efficiency," Energy Policy, Elsevier, vol. 38(8), pages 4339-4354, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joakim Haraldsson & Simon Johnsson & Patrik Thollander & Magnus Wallén, 2021. "Taxonomy, Saving Potentials and Key Performance Indicators for Energy End-Use and Greenhouse Gas Emissions in the Aluminium Industry and Aluminium Casting Foundries," Energies, MDPI, vol. 14(12), pages 1-26, June.
    2. Kanchiralla, Fayas Malik & Jalo, Noor & Thollander, Patrik & Andersson, Maria & Johnsson, Simon, 2021. "Energy use categorization with performance indicators for the food industry and a conceptual energy planning framework," Applied Energy, Elsevier, vol. 304(C).
    3. Khouya, Ahmed, 2020. "Effect of regeneration heat and energy storage on thermal drying performance in a hardwood solar kiln," Renewable Energy, Elsevier, vol. 155(C), pages 783-799.
    4. Shveta Soam & Pål Börjesson, 2020. "Considerations on Potentials, Greenhouse Gas, and Energy Performance of Biofuels Based on Forest Residues for Heavy-Duty Road Transport in Sweden," Energies, MDPI, vol. 13(24), pages 1-21, December.
    5. Gradov, Dmitry Vladimirovich & Yusuf, Yusuf Oluwatoki & Ohjainen, Jussi & Suuronen, Jarkko & Eskola, Roope & Roininen, Lassi & Koiranen, Tuomas, 2022. "Modelling of a continuous veneer drying unit of industrial scale and model-based ANOVA of the energy efficiency," Energy, Elsevier, vol. 244(PA).
    6. Liu, Yang & Zhang, Congrui & Xu, Xiaochuan & Ge, Yongxiang & Ren, Gaofeng, 2022. "Assessment of energy conservation potential and cost in open-pit metal mines: Bottom-up approach integrated energy conservation supply curve and ultimate pit limit," Energy Policy, Elsevier, vol. 163(C).
    7. Satu Lipiäinen & Esa Vakkilainen, 2021. "Role of the Finnish forest industry in mitigating global change: energy use and greenhouse gas emissions towards 2035," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 26(2), pages 1-19, February.
    8. Alessandro Franco & Lorenzo Miserocchi & Daniele Testi, 2023. "Energy Indicators for Enabling Energy Transition in Industry," Energies, MDPI, vol. 16(2), pages 1-18, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joakim Haraldsson & Simon Johnsson & Patrik Thollander & Magnus Wallén, 2021. "Taxonomy, Saving Potentials and Key Performance Indicators for Energy End-Use and Greenhouse Gas Emissions in the Aluminium Industry and Aluminium Casting Foundries," Energies, MDPI, vol. 14(12), pages 1-26, June.
    2. Andersson, Elias & Karlsson, Magnus & Thollander, Patrik & Paramonova, Svetlana, 2018. "Energy end-use and efficiency potentials among Swedish industrial small and medium-sized enterprises – A dataset analysis from the national energy audit program," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 165-177.
    3. Li, Yuan & Zhu, Lei, 2014. "Cost of energy saving and CO2 emissions reduction in China’s iron and steel sector," Applied Energy, Elsevier, vol. 130(C), pages 603-616.
    4. Daniela Artemisa Calu & Adriana Ana Maria Davidescu & Alina Mihaela Irimescu & Corina-Graziella Batca Dumitru & Viorel Avram, 2023. "Implementation of Energy Efficiency Improvement Measures in Romania and the Role of Professional Accountants," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 25(63), pages 479-479, April.
    5. Kong, Lingbo & Hasanbeigi, Ali & Price, Lynn & Liu, Huanbin, 2017. "Energy conservation and CO2 mitigation potentials in the Chinese pulp and paper industry," Resources, Conservation & Recycling, Elsevier, vol. 117(PA), pages 74-84.
    6. Huang, Yun-Hsun & Chang, Yi-Lin & Fleiter, Tobias, 2016. "A critical analysis of energy efficiency improvement potentials in Taiwan's cement industry," Energy Policy, Elsevier, vol. 96(C), pages 14-26.
    7. Leino, M. & Uusitalo, V. & Grönman, A. & Nerg, J. & Horttanainen, M. & Soukka, R. & Pyrhönen, J., 2016. "Economics and greenhouse gas balance of distributed electricity production at sawmills using hermetic turbogenerator," Renewable Energy, Elsevier, vol. 88(C), pages 102-111.
    8. Madlool, N.A. & Saidur, R. & Rahim, N.A. & Kamalisarvestani, M., 2013. "An overview of energy savings measures for cement industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 18-29.
    9. Pasquali, Andrea & Klinge Jacobsen, Henrik, 2019. "Construction of energy savings cost curves: An application for Denmark," MPRA Paper 93076, University Library of Munich, Germany.
    10. Trianni, Andrea & Cagno, Enrico & Farné, Stefano, 2016. "Barriers, drivers and decision-making process for industrial energy efficiency: A broad study among manufacturing small and medium-sized enterprises," Applied Energy, Elsevier, vol. 162(C), pages 1537-1551.
    11. Paramonova, Svetlana & Thollander, Patrik & Ottosson, Mikael, 2015. "Quantifying the extended energy efficiency gap-evidence from Swedish electricity-intensive industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 472-483.
    12. Zhang, Shaohui & Worrell, Ernst & Crijns-Graus, Wina, 2015. "Evaluating co-benefits of energy efficiency and air pollution abatement in China’s cement industry," Applied Energy, Elsevier, vol. 147(C), pages 192-213.
    13. Chen, Hao & Kang, Jia-Ning & Liao, Hua & Tang, Bao-Jun & Wei, Yi-Ming, 2017. "Costs and potentials of energy conservation in China's coal-fired power industry: A bottom-up approach considering price uncertainties," Energy Policy, Elsevier, vol. 104(C), pages 23-32.
    14. Andrea Trianni & Davide Accordini & Enrico Cagno, 2020. "Identification and Categorization of Factors Affecting the Adoption of Energy Efficiency Measures within Compressed Air Systems," Energies, MDPI, vol. 13(19), pages 1-51, October.
    15. Werner König & Sabine Löbbe & Stefan Büttner & Christian Schneider, 2020. "Establishing Energy Efficiency—Drivers for Energy Efficiency in German Manufacturing Small- and Medium-Sized Enterprises," Energies, MDPI, vol. 13(19), pages 1-31, October.
    16. Therese Nehler, 2018. "A Systematic Literature Review of Methods for Improved Utilisation of the Non-Energy Benefits of Industrial Energy Efficiency," Energies, MDPI, vol. 11(12), pages 1-27, November.
    17. Krutwig Michael C. & Tanțău Adrian, 2018. "Obligatory versus voluntary energy audits: are there differences in quality?," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 12(1), pages 522-532, May.
    18. Rodrigues da Silva, Rafael & Mathias, Flavio Roberto de Carvalho & Bajay, Sergio Valdir, 2018. "Potential energy efficiency improvements for the Brazilian iron and steel industry: Fuel and electricity conservation supply curves for integrated steel mills," Energy, Elsevier, vol. 153(C), pages 816-824.
    19. May, Gökan & Stahl, Bojan & Taisch, Marco, 2016. "Energy management in manufacturing: Toward eco-factories of the future – A focus group study," Applied Energy, Elsevier, vol. 164(C), pages 628-638.
    20. Hepburn, Cameron & Teytelboym, Alexander & Cohen, Francois, 2018. "Is Natural Capital Really Substitutable?," INET Oxford Working Papers 2018-12, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:187:y:2019:i:c:s0360544219316032. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.