IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v89y2015icp55-64.html
   My bibliography  Save this article

Analytical solution of optimized energy consumption of Double Star Induction Motor operating in transient regime using a Hamilton–Jacobi–Bellman equation

Author

Listed:
  • Kortas, Imen
  • Sakly, Anis
  • Mimouni, Mohamed Faouzi

Abstract

The problem of energy optimization of a DSIM (Double Stator Induction Motor) using the concept of a RFOC (Rotor Field Oriented Control) can be treated by an OCS (Optimal Control Strategy). Using OCS, a cost-to-go function can be minimized and subjected to the motor dynamic equations and boundary constraints in order to find rotor flux optimal trajectories. This cost-to go function consists of a linear combination of magnetic power, copper loss, and mechanical power. The dynamic equations are represented by using a reduced Blondel Park model of the DSIM. From the HJB (Hamilton–Jacobi–Bellman) equation, a system of nonlinear differential equations is obtained, and analytical solutions of these equations are achieved so as to obtain a time-varying expression of a minimum-energy rotor flux. This analytical solution of rotor flux achieved maximum DSIM's efficiency and was implemented in the ORFOC (optimal rotor flux oriented control) and compared to the conventional RFOC at different dynamic regime of the DSIM. Simulation results are given and improved the effectiveness of the proposed strategy.

Suggested Citation

  • Kortas, Imen & Sakly, Anis & Mimouni, Mohamed Faouzi, 2015. "Analytical solution of optimized energy consumption of Double Star Induction Motor operating in transient regime using a Hamilton–Jacobi–Bellman equation," Energy, Elsevier, vol. 89(C), pages 55-64.
  • Handle: RePEc:eee:energy:v:89:y:2015:i:c:p:55-64
    DOI: 10.1016/j.energy.2015.07.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215009305
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.07.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song, Ziyou & Hofmann, Heath & Li, Jianqiu & Han, Xuebing & Ouyang, Minggao, 2015. "Optimization for a hybrid energy storage system in electric vehicles using dynamic programing approach," Applied Energy, Elsevier, vol. 139(C), pages 151-162.
    2. Buoro, Dario & Pinamonti, Piero & Reini, Mauro, 2014. "Optimization of a Distributed Cogeneration System with solar district heating," Applied Energy, Elsevier, vol. 124(C), pages 298-308.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Memon, Abdul Jabbar & Shaikh, Muhammad Mujtaba, 2016. "Confidence bounds for energy conservation in electric motors: An economical solution using statistical techniques," Energy, Elsevier, vol. 109(C), pages 592-601.
    2. Behzad Kafash, 2019. "Approximating the Solution of Stochastic Optimal Control Problems and the Merton’s Portfolio Selection Model," Computational Economics, Springer;Society for Computational Economics, vol. 54(2), pages 763-782, August.
    3. Lei, Fei & Du, Bin & Liu, Xin & Xie, Xiaoping & Chai, Tian, 2016. "Optimization of an implicit constrained multi-physics system for motor wheels of electric vehicle," Energy, Elsevier, vol. 113(C), pages 980-990.
    4. Lei, Fei & Gu, Ke & Du, Bin & Xie, Xiaoping, 2017. "Comprehensive global optimization of an implicit constrained multi-physics system for electric vehicles with in-wheel motors," Energy, Elsevier, vol. 139(C), pages 523-534.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Min-Hwi Kim & Dong-Won Lee & Deuk-Won Kim & Young-Sub An & Jae-Ho Yun, 2021. "Energy Performance Investigation of Bi-Directional Convergence Energy Prosumers for an Energy Sharing Community," Energies, MDPI, vol. 14(17), pages 1-17, September.
    2. Lan, Hai & Wen, Shuli & Hong, Ying-Yi & Yu, David C. & Zhang, Lijun, 2015. "Optimal sizing of hybrid PV/diesel/battery in ship power system," Applied Energy, Elsevier, vol. 158(C), pages 26-34.
    3. Antonio Rosato & Antonio Ciervo & Giovanni Ciampi & Michelangelo Scorpio & Sergio Sibilio, 2020. "Integration of Micro-Cogeneration Units and Electric Storages into a Micro-Scale Residential Solar District Heating System Operating with a Seasonal Thermal Storage," Energies, MDPI, vol. 13(20), pages 1-40, October.
    4. Zhu, Tao & Wills, Richard G.A. & Lot, Roberto & Ruan, Haijun & Jiang, Zhihao, 2021. "Adaptive energy management of a battery-supercapacitor energy storage system for electric vehicles based on flexible perception and neural network fitting," Applied Energy, Elsevier, vol. 292(C).
    5. Najafi, Arsalan & Falaghi, Hamid & Contreras, Javier & Ramezani, Maryam, 2016. "Medium-term energy hub management subject to electricity price and wind uncertainty," Applied Energy, Elsevier, vol. 168(C), pages 418-433.
    6. Xingyue Jiang & Jianjun Hu & Meixia Jia & Yong Zheng, 2018. "Parameter Matching and Instantaneous Power Allocation for the Hybrid Energy Storage System of Pure Electric Vehicles," Energies, MDPI, vol. 11(8), pages 1-18, July.
    7. Jiajun Liu & Tianxu Jin & Li Liu & Yajue Chen & Kun Yuan, 2017. "Multi-Objective Optimization of a Hybrid ESS Based on Optimal Energy Management Strategy for LHDs," Sustainability, MDPI, vol. 9(10), pages 1-18, October.
    8. Jiaming Zhou & Chunxiao Feng & Qingqing Su & Shangfeng Jiang & Zhixian Fan & Jiageng Ruan & Shikai Sun & Leli Hu, 2022. "The Multi-Objective Optimization of Powertrain Design and Energy Management Strategy for Fuel Cell–Battery Electric Vehicle," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    9. Jiang, Hongliang & Xu, Liangfei & Li, Jianqiu & Hu, Zunyan & Ouyang, Minggao, 2019. "Energy management and component sizing for a fuel cell/battery/supercapacitor hybrid powertrain based on two-dimensional optimization algorithms," Energy, Elsevier, vol. 177(C), pages 386-396.
    10. Zhou, Quan & Zhang, Wei & Cash, Scott & Olatunbosun, Oluremi & Xu, Hongming & Lu, Guoxiang, 2017. "Intelligent sizing of a series hybrid electric power-train system based on Chaos-enhanced accelerated particle swarm optimization," Applied Energy, Elsevier, vol. 189(C), pages 588-601.
    11. Abokersh, Mohamed Hany & Vallès, Manel & Cabeza, Luisa F. & Boer, Dieter, 2020. "A framework for the optimal integration of solar assisted district heating in different urban sized communities: A robust machine learning approach incorporating global sensitivity analysis," Applied Energy, Elsevier, vol. 267(C).
    12. Liu, Xinzhi & Qi, Nanjian & Dai, Keren & Yin, Yajiang & Zhao, Jiahao & Wang, Xiaofeng & You, Zheng, 2022. "Sponge Supercapacitor rule-based energy management strategy for wireless sensor nodes optimized by using dynamic programing algorithm," Energy, Elsevier, vol. 239(PE).
    13. Lin, Cheng & Gong, Xinle & Xiong, Rui & Cheng, Xingqun, 2017. "A novel H∞ and EKF joint estimation method for determining the center of gravity position of electric vehicles," Applied Energy, Elsevier, vol. 194(C), pages 609-616.
    14. da Silva, Samuel Filgueira & Eckert, Jony Javorski & Corrêa, Fernanda Cristina & Silva, Fabrício Leonardo & Silva, Ludmila C.A. & Dedini, Franco Giuseppe, 2022. "Dual HESS electric vehicle powertrain design and fuzzy control based on multi-objective optimization to increase driving range and battery life cycle," Applied Energy, Elsevier, vol. 324(C).
    15. Ferrari, Lorenzo & Esposito, Fabio & Becciani, Michele & Ferrara, Giovanni & Magnani, Sandro & Andreini, Mirko & Bellissima, Alessandro & Cantù, Matteo & Petretto, Giacomo & Pentolini, Massimo, 2017. "Development of an optimization algorithm for the energy management of an industrial Smart User," Applied Energy, Elsevier, vol. 208(C), pages 1468-1486.
    16. Farah Mneimneh & Hasan Ghazzawi & Seeram Ramakrishna, 2023. "Review Study of Energy Efficiency Measures in Favor of Reducing Carbon Footprint of Electricity and Power, Buildings, and Transportation," Circular Economy and Sustainability,, Springer.
    17. Kortas, Imen & Sakly, Anis & Mimouni, Mohamed Faouzi, 2017. "Optimal vector control to a double-star induction motor," Energy, Elsevier, vol. 131(C), pages 279-288.
    18. Zezhong Li & Xiangang Peng & Yilin Xu & Fucheng Zhong & Sheng Ouyang & Kaiguo Xuan, 2023. "A Stackelberg Game-Based Model of Distribution Network-Distributed Energy Storage Systems Considering Demand Response," Mathematics, MDPI, vol. 12(1), pages 1-21, December.
    19. Si, Yupeng & Wang, Rongjie & Zhang, Shiqi & Zhou, Wenting & Lin, Anhui & Zeng, Guangmiao, 2022. "Configuration optimization and energy management of hybrid energy system for marine using quantum computing," Energy, Elsevier, vol. 253(C).
    20. Wang, Chun & Yang, Ruixin & Yu, Quanqing, 2019. "Wavelet transform based energy management strategies for plug-in hybrid electric vehicles considering temperature uncertainty," Applied Energy, Elsevier, vol. 256(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:89:y:2015:i:c:p:55-64. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.