IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v332y2023ics030626192201813x.html
   My bibliography  Save this article

Experimental validation of a hybrid 1-D multi-node model of a hot water thermal energy storage tank

Author

Listed:
  • De la Cruz-Loredo, Iván
  • Zinsmeister, Daniel
  • Licklederer, Thomas
  • Ugalde-Loo, Carlos E.
  • Morales, Daniel A.
  • Bastida, Héctor
  • Perić, Vedran S.
  • Saleem, Arslan

Abstract

Hot water-based thermal energy storage (TES) tanks are extensively used in heating applications to provide operational flexibility. Simple yet effective one-dimensional (1-D) tank models are desirable to simulate and design efficient energy management systems. However, the standard multi-node modelling approach struggles to reproduce the dynamics of highly thermally stratified tanks due to their artificial numerical diffusion. In this paper, a novel 1-D multi-node modelling approach is introduced for accurately simulating water tanks with a high extent of thermal stratification. A non-linear, hybrid continuous–discrete time model able to capture the sudden temperature change within the tank is presented. The modelling approach was adopted to simulate a commercial TES tank, with the model being implemented in MATLAB/Simulink. Results from experimental tests were compared with simulation results, demonstrating that a hybrid continuous–discrete 12-node model accurately estimates the temperatures of the tank. It is also shown that the hybrid model avoids the numerical diffusion exhibited by standard multi-node models. This has been evidenced by the reduced root mean square and mean absolute errors exhibited by the hybrid model when compared with the experimental data.

Suggested Citation

  • De la Cruz-Loredo, Iván & Zinsmeister, Daniel & Licklederer, Thomas & Ugalde-Loo, Carlos E. & Morales, Daniel A. & Bastida, Héctor & Perić, Vedran S. & Saleem, Arslan, 2023. "Experimental validation of a hybrid 1-D multi-node model of a hot water thermal energy storage tank," Applied Energy, Elsevier, vol. 332(C).
  • Handle: RePEc:eee:appene:v:332:y:2023:i:c:s030626192201813x
    DOI: 10.1016/j.apenergy.2022.120556
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192201813X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120556?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nora Cadau & Andrea De Lorenzi & Agostino Gambarotta & Mirko Morini & Michele Rossi, 2019. "Development and Analysis of a Multi-Node Dynamic Model for the Simulation of Stratified Thermal Energy Storage," Energies, MDPI, vol. 12(22), pages 1-22, November.
    2. Theofanis Benakopoulos & Robbe Salenbien & Dirk Vanhoudt & Svend Svendsen, 2019. "Improved Control of Radiator Heating Systems with Thermostatic Radiator Valves without Pre-Setting Function," Energies, MDPI, vol. 12(17), pages 1-24, August.
    3. Baeten, Brecht & Confrey, Thomas & Pecceu, Sébastien & Rogiers, Frederik & Helsen, Lieve, 2016. "A validated model for mixing and buoyancy in stratified hot water storage tanks for use in building energy simulations," Applied Energy, Elsevier, vol. 172(C), pages 217-229.
    4. Castell, A. & Medrano, M. & Solé, C. & Cabeza, L.F., 2010. "Dimensionless numbers used to characterize stratification in water tanks for discharging at low flow rates," Renewable Energy, Elsevier, vol. 35(10), pages 2192-2199.
    5. Han, Y.M. & Wang, R.Z. & Dai, Y.J., 2009. "Thermal stratification within the water tank," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1014-1026, June.
    6. Ferrari, M.L. & Cuneo, A. & Pascenti, M. & Traverso, A., 2017. "Real-time state of charge estimation in thermal storage vessels applied to a smart polygeneration grid," Applied Energy, Elsevier, vol. 206(C), pages 90-100.
    7. Dahash, Abdulrahman & Ochs, Fabian & Janetti, Michele Bianchi & Streicher, Wolfgang, 2019. "Advances in seasonal thermal energy storage for solar district heating applications: A critical review on large-scale hot-water tank and pit thermal energy storage systems," Applied Energy, Elsevier, vol. 239(C), pages 296-315.
    8. del Hoyo Arce, Itzal & Herrero López, Saioa & López Perez, Susana & Rämä, Miika & Klobut, Krzysztof & Febres, Jesus A., 2018. "Models for fast modelling of district heating and cooling networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P2), pages 1863-1873.
    9. Huang, Tao & Yang, Xiaochen & Svendsen, Svend, 2020. "Multi-mode control method for the existing domestic hot water storage tanks with district heating supply," Energy, Elsevier, vol. 191(C).
    10. Guelpa, Elisa & Verda, Vittorio, 2019. "Thermal energy storage in district heating and cooling systems: A review," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    11. Vandermeulen, Annelies & van der Heijde, Bram & Helsen, Lieve, 2018. "Controlling district heating and cooling networks to unlock flexibility: A review," Energy, Elsevier, vol. 151(C), pages 103-115.
    12. Wang, Zilong & Zhang, Hua & Dou, Binlin & Huang, Huajie & Wu, Weidong & Wang, Zhiyun, 2017. "Experimental and numerical research of thermal stratification with a novel inlet in a dynamic hot water storage tank," Renewable Energy, Elsevier, vol. 111(C), pages 353-371.
    13. Rendall, Joseph & Abu-Heiba, Ahmad & Gluesenkamp, Kyle & Nawaz, Kashif & Worek, William & Elatar, Ahmed, 2021. "Nondimensional convection numbers modeling thermally stratified storage tanks: Richardson's number and hot-water tanks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zinsmeister, Daniel & Tzscheutschler, Peter & Perić, Vedran S. & Goebel, Christoph, 2023. "Stratified thermal energy storage model with constant layer volume for predictive control — Formulation, comparison, and empirical validation," Renewable Energy, Elsevier, vol. 219(P2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. De Lorenzi, Andrea & Gambarotta, Agostino & Morini, Mirko & Rossi, Michele & Saletti, Costanza, 2020. "Setup and testing of smart controllers for small-scale district heating networks: An integrated framework," Energy, Elsevier, vol. 205(C).
    2. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    3. Dahash, Abdulrahman & Ochs, Fabian & Tosatto, Alice & Streicher, Wolfgang, 2020. "Toward efficient numerical modeling and analysis of large-scale thermal energy storage for renewable district heating," Applied Energy, Elsevier, vol. 279(C).
    4. Bai, Yakai & Wang, Zhifeng & Fan, Jianhua & Yang, Ming & Li, Xiaoxia & Chen, Longfei & Yuan, Guofeng & Yang, Junfeng, 2020. "Numerical and experimental study of an underground water pit for seasonal heat storage," Renewable Energy, Elsevier, vol. 150(C), pages 487-508.
    5. Chandra, Yogender Pal & Matuska, Tomas, 2020. "Numerical prediction of the stratification performance in domestic hot water storage tanks," Renewable Energy, Elsevier, vol. 154(C), pages 1165-1179.
    6. Untrau, Alix & Sochard, Sabine & Marias, Frédéric & Reneaume, Jean-Michel & Le Roux, Galo A.C. & Serra, Sylvain, 2023. "A fast and accurate 1-dimensional model for dynamic simulation and optimization of a stratified thermal energy storage," Applied Energy, Elsevier, vol. 333(C).
    7. Guelpa, Elisa & Verda, Vittorio, 2021. "Demand response and other demand side management techniques for district heating: A review," Energy, Elsevier, vol. 219(C).
    8. Yang, Tianrun & Liu, Wen & Kramer, Gert Jan & Sun, Qie, 2021. "Seasonal thermal energy storage: A techno-economic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    9. Li, Qiong & Huang, Xiaoqiao & Tai, Yonghang & Gao, Wenfeng & Wenxian, L. & Liu, Wuming, 2021. "Thermal stratification in a solar hot water storage tank with mantle heat exchanger," Renewable Energy, Elsevier, vol. 173(C), pages 1-11.
    10. Arteconi, A. & Hewitt, N.J. & Polonara, F., 2012. "State of the art of thermal storage for demand-side management," Applied Energy, Elsevier, vol. 93(C), pages 371-389.
    11. Egging-Bratseth, Ruud & Kauko, Hanne & Knudsen, Brage Rugstad & Bakke, Sara Angell & Ettayebi, Amina & Haufe, Ina Renate, 2021. "Seasonal storage and demand side management in district heating systems with demand uncertainty," Applied Energy, Elsevier, vol. 285(C).
    12. Danica Djurić Ilić, 2020. "Classification of Measures for Dealing with District Heating Load Variations—A Systematic Review," Energies, MDPI, vol. 14(1), pages 1-27, December.
    13. Wanruo Lou & Lingai Luo & Yuchao Hua & Yilin Fan & Zhenyu Du, 2021. "A Review on the Performance Indicators and Influencing Factors for the Thermocline Thermal Energy Storage Systems," Energies, MDPI, vol. 14(24), pages 1-19, December.
    14. Piyatida Trinuruk & Papangkorn Jenyongsak & Somchai Wongwises, 2022. "Comparative Study of Inlet Structure and Obstacle Plate Designs Affecting the Temperature Stratification Characteristics," Energies, MDPI, vol. 15(6), pages 1-25, March.
    15. David Vérez & Emiliano Borri & Alicia Crespo & Gabriel Zsembinszki & Belal Dawoud & Luisa F. Cabeza, 2021. "Experimental Study of a Small-Size Vacuum Insulated Water Tank for Building Applications," Sustainability, MDPI, vol. 13(10), pages 1-11, May.
    16. Lou, Wanruo & Xie, Baoshan & Aubril, Julien & Fan, Yilin & Luo, Lingai & Arrivé, Arnaud, 2023. "Optimized flow distributor for stabilized thermal stratification in a single-medium thermocline storage tank: A numerical and experimental study," Energy, Elsevier, vol. 263(PA).
    17. He, Ke-Lun & Zhao, Tian & Ma, Huan & Chen, Qun, 2023. "Optimal operation of integrated power and thermal systems for flexibility improvement based on evaluation and utilization of heat storage in district heating systems," Energy, Elsevier, vol. 274(C).
    18. Abdelsalam, Mohamed Y. & Friedrich, Kelton & Mohamed, Saber & Chebeir, Jorge & Lakhian, Vickram & Sullivan, Brendan & Abdalla, Ahmed & Van Ryn, Jessica & Girard, Jeffrey & Lightstone, Marilyn F. & Buc, 2023. "Integrated community energy and harvesting systems: A climate action strategy for cold climates," Applied Energy, Elsevier, vol. 346(C).
    19. Nash, Austin L. & Badithela, Apurva & Jain, Neera, 2017. "Dynamic modeling of a sensible thermal energy storage tank with an immersed coil heat exchanger under three operation modes," Applied Energy, Elsevier, vol. 195(C), pages 877-889.
    20. Xun Yang & Yong Wang & Teng Xiong, 2017. "Numerical and Experimental Study on a Solar Water Heating System in Lhasa," Energies, MDPI, vol. 10(7), pages 1-13, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:332:y:2023:i:c:s030626192201813x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.