IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v371y2024ics0306261924009097.html
   My bibliography  Save this article

Discrete-time state-of-charge estimator for latent heat thermal energy storage units based on a recurrent neural network

Author

Listed:
  • Bastida, Hector
  • De la Cruz-Loredo, Ivan
  • Saikia, Pranaynil
  • Ugalde-Loo, Carlos E.

Abstract

Energy storage systems enable balancing supply and demand and facilitate the integration of intermittent renewable energy sources. In particular, latent heat thermal energy storage units are attractive for deployment in thermal systems due to their high energy density. However, knowledge of the state-of-charge of a thermal store is crucial to effectively regulate its charging and discharging cycles. To achieve this, continuous-time non-linear observers may be employed to estimate the state-of-charge at the expense of a high computational cost. The emergence of artificial intelligence solutions may be helpful to reduce computational burden, but their adoption for thermal stores has been limited. This paper bridges this research gap by presenting a novel approach to predict the state-of-charge of a latent heat unit. It employs a discrete-time estimator based on a recurrent neural network, which is based on a long short-term memory structure and the regression method for estimation. The estimator offers a reduced computation time for state-of-charge estimation and allows flexible sampling adjustments without sacrificing accuracy. Additionally, the presented approach simplifies data collection by independently handling charging and discharging processes through internal state resets. The estimator, trained using MATLAB’s deep learning toolbox, uses a dataset comprising various operating conditions obtained from simulations of a physics-based model. When compared against a more traditional state-of-charge estimation method using a discrete-time non-linear observer, the advantages of a recurrent neural network-based estimator are evidenced, highlighting its potential for practical applications. The presented method exhibited high accuracy with a maximum root mean square error under 0.73% and a mean absolute error below 0.41% with respect to direct state-of-charge calculation. Although the discrete-time non-linear observer exhibited a marginal higher accuracy, the recurrent neural network-based estimator achieved a significant improvement in computational efficiency. These findings make the proposed approach a robust tool facilitating enhanced control strategies, optimised energy management, and increased overall thermal system performance.

Suggested Citation

  • Bastida, Hector & De la Cruz-Loredo, Ivan & Saikia, Pranaynil & Ugalde-Loo, Carlos E., 2024. "Discrete-time state-of-charge estimator for latent heat thermal energy storage units based on a recurrent neural network," Applied Energy, Elsevier, vol. 371(C).
  • Handle: RePEc:eee:appene:v:371:y:2024:i:c:s0306261924009097
    DOI: 10.1016/j.apenergy.2024.123526
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924009097
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123526?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. De la Cruz-Loredo, Iván & Zinsmeister, Daniel & Licklederer, Thomas & Ugalde-Loo, Carlos E. & Morales, Daniel A. & Bastida, Héctor & Perić, Vedran S. & Saleem, Arslan, 2023. "Experimental validation of a hybrid 1-D multi-node model of a hot water thermal energy storage tank," Applied Energy, Elsevier, vol. 332(C).
    2. Feng, Xiong & Chen, Junxiong & Zhang, Zhongwei & Miao, Shuwen & Zhu, Qiao, 2021. "State-of-charge estimation of lithium-ion battery based on clockwork recurrent neural network," Energy, Elsevier, vol. 236(C).
    3. Fan, Yubin & Zhang, Chunwei & Jiang, Long & Zhang, Xuejun & Qiu, Limin, 2022. "Exploration on two-stage latent thermal energy storage for heat recovery in cryogenic air separation purification system," Energy, Elsevier, vol. 239(PB).
    4. Hou, Juan & Li, Haoran & Nord, Natasa & Huang, Gongsheng, 2023. "Model predictive control for a university heat prosumer with data centre waste heat and thermal energy storage," Energy, Elsevier, vol. 267(C).
    5. Bastida, Hector & De la Cruz-Loredo, Ivan & Ugalde-Loo, Carlos E., 2023. "Effective estimation of the state-of-charge of latent heat thermal energy storage for heating and cooling systems using non-linear state observers," Applied Energy, Elsevier, vol. 331(C).
    6. Ren, Xiaoqing & Liu, Shulin & Yu, Xiaodong & Dong, Xia, 2021. "A method for state-of-charge estimation of lithium-ion batteries based on PSO-LSTM," Energy, Elsevier, vol. 234(C).
    7. Lizana, Jesús & Chacartegui, Ricardo & Barrios-Padura, Angela & Valverde, José Manuel, 2017. "Advances in thermal energy storage materials and their applications towards zero energy buildings: A critical review," Applied Energy, Elsevier, vol. 203(C), pages 219-239.
    8. Chen, Junxiong & Zhang, Yu & Wu, Ji & Cheng, Weisong & Zhu, Qiao, 2023. "SOC estimation for lithium-ion battery using the LSTM-RNN with extended input and constrained output," Energy, Elsevier, vol. 262(PA).
    9. Cabeza, Luisa F. & de Gracia, Alvaro & Zsembinszki, Gabriel & Borri, Emiliano, 2021. "Perspectives on thermal energy storage research," Energy, Elsevier, vol. 231(C).
    10. Domanski, R. & El-Sebaii, A.A. & Jaworski, M., 1995. "Cooking during off-sunshine hours using PCMs as storage media," Energy, Elsevier, vol. 20(7), pages 607-616.
    11. Xi, Zhimin & Wang, Rui & Fu, Yuhong & Mi, Chris, 2022. "Accurate and reliable state of charge estimation of lithium ion batteries using time-delayed recurrent neural networks through the identification of overexcited neurons," Applied Energy, Elsevier, vol. 305(C).
    12. Jana Shafi & Mehdi Ghalambaz & Mehdi Fteiti & Muneer Ismael & Mohammad Ghalambaz, 2022. "Computational Modeling of Latent Heat Thermal Energy Storage in a Shell-Tube Unit: Using Neural Networks and Anisotropic Metal Foam," Mathematics, MDPI, vol. 10(24), pages 1-26, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zafar, Muhammad Hamza & Khan, Noman Mujeeb & Houran, Mohamad Abou & Mansoor, Majad & Akhtar, Naureen & Sanfilippo, Filippo, 2024. "A novel hybrid deep learning model for accurate state of charge estimation of Li-Ion batteries for electric vehicles under high and low temperature," Energy, Elsevier, vol. 292(C).
    2. Chen, Junxiong & Zhang, Yu & Wu, Ji & Cheng, Weisong & Zhu, Qiao, 2023. "SOC estimation for lithium-ion battery using the LSTM-RNN with extended input and constrained output," Energy, Elsevier, vol. 262(PA).
    3. Cui, Zhenhua & Kang, Le & Li, Liwei & Wang, Licheng & Wang, Kai, 2022. "A hybrid neural network model with improved input for state of charge estimation of lithium-ion battery at low temperatures," Renewable Energy, Elsevier, vol. 198(C), pages 1328-1340.
    4. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Li, Huan & Xu, Wenhua & Fernandez, Carlos, 2022. "An optimized relevant long short-term memory-squared gain extended Kalman filter for the state of charge estimation of lithium-ion batteries," Energy, Elsevier, vol. 260(C).
    5. Bastida, Hector & De la Cruz-Loredo, Ivan & Ugalde-Loo, Carlos E., 2023. "Effective estimation of the state-of-charge of latent heat thermal energy storage for heating and cooling systems using non-linear state observers," Applied Energy, Elsevier, vol. 331(C).
    6. Xie, Yanxin & Wang, Shunli & Zhang, Gexiang & Fan, Yongcun & Fernandez, Carlos & Blaabjerg, Frede, 2023. "Optimized multi-hidden layer long short-term memory modeling and suboptimal fading extended Kalman filtering strategies for the synthetic state of charge estimation of lithium-ion batteries," Applied Energy, Elsevier, vol. 336(C).
    7. Siyi Tao & Bo Jiang & Xuezhe Wei & Haifeng Dai, 2023. "A Systematic and Comparative Study of Distinct Recurrent Neural Networks for Lithium-Ion Battery State-of-Charge Estimation in Electric Vehicles," Energies, MDPI, vol. 16(4), pages 1-17, February.
    8. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiao & Fernandez, Carlos, 2023. "A hybrid probabilistic correction model for the state of charge estimation of lithium-ion batteries considering dynamic currents and temperatures," Energy, Elsevier, vol. 273(C).
    9. Ruan, Guanqiang & Liu, Zixi & Cheng, Jinrun & Hu, Xing & Chen, Song & Liu, Shiwen & Guo, Yong & Yang, Kuo, 2024. "A deep learning model for predicting the state of energy in lithium-ion batteries based on magnetic field effects," Energy, Elsevier, vol. 304(C).
    10. Semeraro, Concetta & Caggiano, Mariateresa & Olabi, Abdul-Ghani & Dassisti, Michele, 2022. "Battery monitoring and prognostics optimization techniques: Challenges and opportunities," Energy, Elsevier, vol. 255(C).
    11. Chai, Xuqing & Li, Shihao & Liang, Fengwei, 2024. "A novel battery SOC estimation method based on random search optimized LSTM neural network," Energy, Elsevier, vol. 306(C).
    12. Yu, Hanqing & Zhang, Lisheng & Wang, Wentao & Li, Shen & Chen, Siyan & Yang, Shichun & Li, Junfu & Liu, Xinhua, 2023. "State of charge estimation method by using a simplified electrochemical model in deep learning framework for lithium-ion batteries," Energy, Elsevier, vol. 278(C).
    13. Li, Feng & Zuo, Wei & Zhou, Kun & Li, Qingqing & Huang, Yuhan & Zhang, Guangde, 2024. "State-of-charge estimation of lithium-ion battery based on second order resistor-capacitance circuit-PSO-TCN model," Energy, Elsevier, vol. 289(C).
    14. Lizana, Jesus & Halloran, Claire E. & Wheeler, Scot & Amghar, Nabil & Renaldi, Renaldi & Killendahl, Markus & Perez-Maqueda, Luis A. & McCulloch, Malcolm & Chacartegui, Ricardo, 2023. "A national data-based energy modelling to identify optimal heat storage capacity to support heating electrification," Energy, Elsevier, vol. 262(PA).
    15. Cui, Zhenhua & Kang, Le & Li, Liwei & Wang, Licheng & Wang, Kai, 2022. "A combined state-of-charge estimation method for lithium-ion battery using an improved BGRU network and UKF," Energy, Elsevier, vol. 259(C).
    16. Saikia, Pranaynil & Bastida, Héctor & Ugalde-Loo, Carlos E., 2024. "An effective predictor of the dynamic operation of latent heat thermal energy storage units based on a non-linear autoregressive network with exogenous inputs," Applied Energy, Elsevier, vol. 360(C).
    17. Kurucan, Mehmet & Özbaltan, Mete & Yetgin, Zeki & Alkaya, Alkan, 2024. "Applications of artificial neural network based battery management systems: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    18. Zhan, Mingjing & Wu, Baigong & Xu, Guoqi & Li, Wenjuan & Liang, Darong & Zhang, Xiao, 2023. "Application of adaptive extended Kalman algorithm based on strong tracking fading factor in Stat-of-Charge estimation of lithium-ion battery," Energy, Elsevier, vol. 284(C).
    19. Jichao Hong & Fengwei Liang & Xun Gong & Xiaoming Xu & Quanqing Yu, 2022. "Accurate State of Charge Estimation for Real-World Battery Systems Using a Novel Grid Search and Cross Validated Optimised LSTM Neural Network," Energies, MDPI, vol. 15(24), pages 1-14, December.
    20. Zhang, Qiang & Wan, Guangwei & Li, Chaoran & Li, Jianke & Liu, Xiaori & Li, Menghan, 2024. "State of charge estimation for Li-ion battery during dynamic driving process based on dual-channel deep learning methods and conditional judgement," Energy, Elsevier, vol. 294(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:371:y:2024:i:c:s0306261924009097. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.