IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v274y2023ics0360544223008150.html
   My bibliography  Save this article

Optimal operation of integrated power and thermal systems for flexibility improvement based on evaluation and utilization of heat storage in district heating systems

Author

Listed:
  • He, Ke-Lun
  • Zhao, Tian
  • Ma, Huan
  • Chen, Qun

Abstract

Heat storage in district heating system is promising for renewable energy accommodation because it effectively improves system flexibility. However, its proper evaluation remains unclear, preventing its full utilization. This work distinguishes heat storage mechanisms of heating network (HN) and buildings rigorously by combining a unified multi-energy flow model and energy conservation analysis. Heat storage of HN is attributed to heat migration processes inside, while that of buildings originates from heat capacities of envelopes. On this basis, water flow rate and supply water temperature in primary HN (PHN) and set values of indoor air temperature are optimized to improve the system flexibility, namely the wind power accommodation. Different combinations of the three optimizations are also studied to improve system flexibility to the greatest extent. Results show that optimizing water flow rates and supply water temperature in PHN and optimizing water flow rates in PHN and set values of indoor air temperature yield 14.3% and 15.3% additional increase of wind power accommodation, respectively, compared with their ideal superposition. On the contrary, optimizing supply water temperature in PHN and set values of indoor air temperature gives a 30.2% reduction of wind power accommodation increase compared with the sum of two standalone optimizations.

Suggested Citation

  • He, Ke-Lun & Zhao, Tian & Ma, Huan & Chen, Qun, 2023. "Optimal operation of integrated power and thermal systems for flexibility improvement based on evaluation and utilization of heat storage in district heating systems," Energy, Elsevier, vol. 274(C).
  • Handle: RePEc:eee:energy:v:274:y:2023:i:c:s0360544223008150
    DOI: 10.1016/j.energy.2023.127421
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223008150
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127421?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Xuezhi & Wu, Jianzhong & Jenkins, Nick & Bagdanavicius, Audrius, 2016. "Combined analysis of electricity and heat networks," Applied Energy, Elsevier, vol. 162(C), pages 1238-1250.
    2. Gou, Xing & Chen, Qun & He, Ke-Lun, 2022. "Real-time quantification for dynamic heat storage characteristic of district heating system and its application in dispatch of integrated energy system," Energy, Elsevier, vol. 259(C).
    3. Cui, Qi & He, Ling & Han, Guoyi & Chen, Hao & Cao, Juanjuan, 2020. "Review on climate and water resource implications of reducing renewable power curtailment in China: A nexus perspective," Applied Energy, Elsevier, vol. 267(C).
    4. Xin, Yong-Lin & Zhao, Tian & Chen, Xi & He, Ke-Lun & Ma, Huan & Chen, Qun, 2022. "Heat current method-based real-time coordination of power and heat generation of multi-CHP units with flexibility retrofits," Energy, Elsevier, vol. 252(C).
    5. Chen, Xi & Zhao, Tian & Chen, Qun, 2022. "An online parameter identification and real-time optimization platform for thermal systems and its application," Applied Energy, Elsevier, vol. 307(C).
    6. Gu, Wei & Wang, Jun & Lu, Shuai & Luo, Zhao & Wu, Chenyu, 2017. "Optimal operation for integrated energy system considering thermal inertia of district heating network and buildings," Applied Energy, Elsevier, vol. 199(C), pages 234-246.
    7. Kouhia, Mikko & Laukkanen, Timo & Holmberg, Henrik & Ahtila, Pekka, 2019. "District heat network as a short-term energy storage," Energy, Elsevier, vol. 177(C), pages 293-303.
    8. Zhang, Chongyu & Lu, Xi & Ren, Guo & Chen, Shi & Hu, Chengyu & Kong, Zhaoyang & Zhang, Ning & Foley, Aoife M., 2021. "Optimal allocation of onshore wind power in China based on cluster analysis," Applied Energy, Elsevier, vol. 285(C).
    9. Xu, Fei & Hao, Ling & Chen, Lei & Chen, Qun & Wei, Mingshan & Min, Yong, 2023. "Integrated heat and power optimal dispatch method considering the district heating networks flow rate regulation for wind power accommodation," Energy, Elsevier, vol. 263(PA).
    10. Jin, Xiaolong & Mu, Yunfei & Jia, Hongjie & Wu, Jianzhong & Jiang, Tao & Yu, Xiaodan, 2017. "Dynamic economic dispatch of a hybrid energy microgrid considering building based virtual energy storage system," Applied Energy, Elsevier, vol. 194(C), pages 386-398.
    11. He, Ke-Lun & Chen, Qun & Ma, Huan & Zhao, Tian & Hao, Jun-Hong, 2020. "An isomorphic multi-energy flow modeling for integrated power and thermal system considering nonlinear heat transfer constraint," Energy, Elsevier, vol. 211(C).
    12. Bingda Zhang & Yanjie Wu & Zhao Jin & Yang Wang, 2017. "A Real-Time Digital Solver for Smart Substation Based on Orders," Energies, MDPI, vol. 10(11), pages 1-16, November.
    13. Chen, Xi & Chen, Qun & Chen, Hong & Xu, Ying-Gen & Zhao, Tian & Hu, Kang & He, Ke-Lun, 2019. "Heat current method for analysis and optimization of heat recovery-based power generation systems," Energy, Elsevier, vol. 189(C).
    14. Guelpa, Elisa & Verda, Vittorio, 2019. "Thermal energy storage in district heating and cooling systems: A review," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    15. Lu, Shuai & Gu, Wei & Zhou, Jinhui & Zhang, Xuesong & Wu, Chenyu, 2018. "Coordinated dispatch of multi-energy system with district heating network: Modeling and solution strategy," Energy, Elsevier, vol. 152(C), pages 358-370.
    16. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
    17. Diuana, Fabio A. & Viviescas, Cindy & Schaeffer, Roberto, 2019. "An analysis of the impacts of wind power penetration in the power system of southern Brazil," Energy, Elsevier, vol. 186(C).
    18. Jochen Markard, 2018. "The next phase of the energy transition and its implications for research and policy," Nature Energy, Nature, vol. 3(8), pages 628-633, August.
    19. Capone, Martina & Guelpa, Elisa & Mancò, Giulia & Verda, Vittorio, 2021. "Integration of storage and thermal demand response to unlock flexibility in district multi-energy systems," Energy, Elsevier, vol. 237(C).
    20. Buffa, Simone & Cozzini, Marco & D’Antoni, Matteo & Baratieri, Marco & Fedrizzi, Roberto, 2019. "5th generation district heating and cooling systems: A review of existing cases in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 504-522.
    21. Zheng, Xuejing & Sun, Qihang & Wang, Yaran & Zheng, Lijun & Gao, Xinyong & You, Shijun & Zhang, Huan & Shi, Kaiyu, 2021. "Thermo-hydraulic coupled simulation and analysis of a real large-scale complex district heating network in Tianjin," Energy, Elsevier, vol. 236(C).
    22. Vesterlund, Mattias & Toffolo, Andrea & Dahl, Jan, 2017. "Optimization of multi-source complex district heating network, a case study," Energy, Elsevier, vol. 126(C), pages 53-63.
    23. Sun, Peng & Teng, Yun & Chen, Zhe, 2021. "Robust coordinated optimization for multi-energy systems based on multiple thermal inertia numerical simulation and uncertainty analysis," Applied Energy, Elsevier, vol. 296(C).
    24. Yao, Shuai & Gu, Wei & Wu, Jianzhong & Lu, Hai & Zhang, Suhan & Zhou, Yue & Lu, Shuai, 2022. "Dynamic energy flow analysis of the heat-electricity integrated energy systems with a novel decomposition-iteration algorithm," Applied Energy, Elsevier, vol. 322(C).
    25. Li, Xue & Li, Wenming & Zhang, Rufeng & Jiang, Tao & Chen, Houhe & Li, Guoqing, 2020. "Collaborative scheduling and flexibility assessment of integrated electricity and district heating systems utilizing thermal inertia of district heating network and aggregated buildings," Applied Energy, Elsevier, vol. 258(C).
    26. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    27. Vandermeulen, Annelies & van der Heijde, Bram & Helsen, Lieve, 2018. "Controlling district heating and cooling networks to unlock flexibility: A review," Energy, Elsevier, vol. 151(C), pages 103-115.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Tian & Li, Hang & Li, Xia & Sun, Qing-Han & Fang, Xuan-Yi & Ma, Huan & Chen, Qun, 2024. "A frequency domain dynamic simulation method for heat exchangers and thermal systems," Energy, Elsevier, vol. 286(C).
    2. Bogdanovics, Raimonds & Zemitis, Jurgis & Zajacs, Aleksandrs & Borodinecs, Anatolijs, 2024. "Small-scale district heating system as heat storage for decentralized solar thermal collectors during non-heating period," Energy, Elsevier, vol. 298(C).
    3. Mohammadnia, Ali & Iov, Florin & Rasmussen, Morten Karstoft & Nielsen, Mads Pagh, 2024. "Feasibility assessment of next-generation smart district heating networks by intelligent energy management strategies," Energy, Elsevier, vol. 296(C).
    4. Chen, Qun & Meng, Nan & He, Ke-Lun & Ma, Huan & Gou, Xing, 2024. "Multi-time scale operation optimization of integrated power and thermal system considering load disturbance," Energy, Elsevier, vol. 302(C).
    5. Xu, Rong-Hong & Zhao, Tian & Ma, Huan & He, Ke-Lun & Lv, Hong-Kun & Guo, Xu-Tao & Chen, Qun, 2023. "Operation optimization of distributed energy systems considering nonlinear characteristics of multi-energy transport and conversion processes," Energy, Elsevier, vol. 283(C).
    6. Cao, Menglong & Wang, Zhe & Tang, Haobo & Li, Songran & Ji, Yulong & Han, Fenghui, 2024. "Heat flow topology-driven thermo-mass decoupling strategy: Cross-scale regularization modeling and optimization analysis," Applied Energy, Elsevier, vol. 367(C).
    7. Wang, Zhe & Cao, Menglong & Tang, Haobo & Ji, Yulong & Han, Fenghui, 2024. "A global heat flow topology for revealing the synergistic effects of heat transfer and thermal power conversion in large scale systems: Methodology and case study," Energy, Elsevier, vol. 290(C).
    8. Yang, Miao & Ding, Tao & Chang, Xinyue & Xue, Yixun & Ge, Huaichang & Jia, Wenhao & Du, Sijun & Zhang, Hongji, 2024. "Analysis of equivalent energy storage for integrated electricity-heat system," Energy, Elsevier, vol. 303(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Dongwen & Hu, Xiao & Li, Yong & Abbas, Zulkarnain & Wang, Ruzhu & Li, Dehong, 2023. "Nodal conservation principle of potential energy flow analysis for energy flow calculation in energy internet," Energy, Elsevier, vol. 263(PA).
    2. Saletti, Costanza & Zimmerman, Nathan & Morini, Mirko & Kyprianidis, Konstantinos & Gambarotta, Agostino, 2021. "Enabling smart control by optimally managing the State of Charge of district heating networks," Applied Energy, Elsevier, vol. 283(C).
    3. Frölke, Linde & Sousa, Tiago & Pinson, Pierre, 2022. "A network-aware market mechanism for decentralized district heating systems," Applied Energy, Elsevier, vol. 306(PA).
    4. Egging-Bratseth, Ruud & Kauko, Hanne & Knudsen, Brage Rugstad & Bakke, Sara Angell & Ettayebi, Amina & Haufe, Ina Renate, 2021. "Seasonal storage and demand side management in district heating systems with demand uncertainty," Applied Energy, Elsevier, vol. 285(C).
    5. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    6. Chen, Dongwen & Li, Yong & Abbas, Zulkarnain & Li, Dehong & Wang, Ruzhu, 2022. "Network flow calculation based on the directional nodal potential method for meshed heating networks," Energy, Elsevier, vol. 243(C).
    7. Chen, Qun & Meng, Nan & He, Ke-Lun & Ma, Huan & Gou, Xing, 2024. "Multi-time scale operation optimization of integrated power and thermal system considering load disturbance," Energy, Elsevier, vol. 302(C).
    8. Guelpa, Elisa & Verda, Vittorio, 2021. "Demand response and other demand side management techniques for district heating: A review," Energy, Elsevier, vol. 219(C).
    9. Hao, Junhong & Tian, Liang & Yang, Yunxi & Feng, Xiaolong & Liang, Lu & Hong, Feng & Du, Xiaoze, 2024. "A novel asynchronous time-scale holistic control method for heating system based on the energy state space," Energy, Elsevier, vol. 290(C).
    10. Gou, Xing & Chen, Qun & He, Ke-Lun, 2022. "Real-time quantification for dynamic heat storage characteristic of district heating system and its application in dispatch of integrated energy system," Energy, Elsevier, vol. 259(C).
    11. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    12. Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
    13. Vandermeulen, Annelies & Van Oevelen, Tijs & van der Heijde, Bram & Helsen, Lieve, 2020. "A simulation-based evaluation of substation models for network flexibility characterisation in district heating networks," Energy, Elsevier, vol. 201(C).
    14. Boldrini, A. & Jiménez Navarro, J.P. & Crijns-Graus, W.H.J. & van den Broek, M.A., 2022. "The role of district heating systems to provide balancing services in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    15. Zhang, Suhan & Gu, Wei & Qiu, Haifeng & Yao, Shuai & Pan, Guangsheng & Chen, Xiaogang, 2021. "State estimation models of district heating networks for integrated energy system considering incomplete measurements," Applied Energy, Elsevier, vol. 282(PA).
    16. Danica Djurić Ilić, 2020. "Classification of Measures for Dealing with District Heating Load Variations—A Systematic Review," Energies, MDPI, vol. 14(1), pages 1-27, December.
    17. Zheng, Jinfu & Zhou, Zhigang & Zhao, Jianing & Hu, Songtao & Wang, Jinda, 2021. "Effects of intermittent heating on an integrated heat and power dispatch system for wind power integration and corresponding operation regulation," Applied Energy, Elsevier, vol. 287(C).
    18. Nord, Natasa & Shakerin, Mohammad & Tereshchenko, Tymofii & Verda, Vittorio & Borchiellini, Romano, 2021. "Data informed physical models for district heating grids with distributed heat sources to understand thermal and hydraulic aspects," Energy, Elsevier, vol. 222(C).
    19. Hirsch, Hauke & Nicolai, Andreas, 2022. "An efficient numerical solution method for detailed modelling of large 5th generation district heating and cooling networks," Energy, Elsevier, vol. 255(C).
    20. Hering, Dominik & Cansev, Mehmet Ege & Tamassia, Eugenio & Xhonneux, André & Müller, Dirk, 2021. "Temperature control of a low-temperature district heating network with Model Predictive Control and Mixed-Integer Quadratically Constrained Programming," Energy, Elsevier, vol. 224(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:274:y:2023:i:c:s0360544223008150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.