IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1281-d1046238.html
   My bibliography  Save this article

Effects of Alcohol-Blended Waste Plastic Oil on Engine Performance Characteristics and Emissions of a Diesel Engine

Author

Listed:
  • Chalita Kaewbuddee

    (Faculty of Industrial Technology, Surindra Rajabhat University, Surin 32000, Thailand)

  • Somkiat Maithomklang

    (School of Engineer and Innovation, Rajamangala University of Technology Tawan-ok, Chonburi 20110, Thailand)

  • Prasert Aengchuan

    (School of Manufacturing Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand)

  • Attasit Wiangkham

    (School of Manufacturing Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand)

  • Niti Klinkaew

    (Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand)

  • Atthaphon Ariyarit

    (School of Mechanical Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand)

  • Ekarong Sukjit

    (School of Mechanical Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand)

Abstract

The current study aims to investigate and compare the effects of waste plastic oil blended with n-butanol on the characteristics of diesel engines and exhaust gas emissions. Waste plastic oil produced by the pyrolysis process was blended with n-butanol at 5%, 10%, and 15% by volume. Experiments were conducted on a four-stroke, four-cylinder, water-cooled, direct injection diesel engine with a variation of five engine loads, while the engine’s speed was fixed at 2500 rpm. The experimental results showed that the main hydrocarbons present in WPO were within the range of diesel fuel (C13–C18, approximately 74.39%), while its specific gravity and flash point were out of the limit prescribed by the diesel fuel specification. The addition of n-butanol to WPO was found to reduce the engine’s thermal efficiency and increase HC and CO emissions, especially when the engine operated at low-load conditions. In order to find the suitable ratio of n-butanol blends when the engine operated at the tested engine load, the optimization process was carried out by considering the engine’s load and ratio of the n-butanol blend as input factors and the engine’s performance and emissions as output factors. It was found that the multi-objective function produced by the general regression neural network (GRNN) can be modeled as the multi-objective function with high predictive performances. The coefficient of determination ( R 2 ), mean absolute percentage error ( MAPE ), and root mean square error ( RSME ) of the optimization model proposed in the study were 0.999, 2.606%, and 0.663, respectively, when brake thermal efficiency was considered, while nitrogen oxide values were 0.998, 6.915%, and 0.600, respectively. As for the results of the optimization using NSGA-II, a single optimum value may not be attained as with the other methods, but the optimization’s boundary was obtained, which was established by making a trade-off between brake thermal efficiency and nitrogen oxide emissions. According to the Pareto frontier, the engine load and ratio of the n-butanol blend that caused the trade-off between maximum brake thermal efficiency and minimum nitrogen oxides are within the approximate range of 37 N.m to 104 N.m and 9% to 14%, respectively.

Suggested Citation

  • Chalita Kaewbuddee & Somkiat Maithomklang & Prasert Aengchuan & Attasit Wiangkham & Niti Klinkaew & Atthaphon Ariyarit & Ekarong Sukjit, 2023. "Effects of Alcohol-Blended Waste Plastic Oil on Engine Performance Characteristics and Emissions of a Diesel Engine," Energies, MDPI, vol. 16(3), pages 1-25, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1281-:d:1046238
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1281/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1281/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kalargaris, Ioannis & Tian, Guohong & Gu, Sai, 2017. "The utilisation of oils produced from plastic waste at different pyrolysis temperatures in a DI diesel engine," Energy, Elsevier, vol. 131(C), pages 179-185.
    2. Chalita Kaewbuddee & Ekarong Sukjit & Jiraphon Srisertpol & Somkiat Maithomklang & Khatha Wathakit & Niti Klinkaew & Pansa Liplap & Weerachai Arjharn, 2020. "Evaluation of Waste Plastic Oil-Biodiesel Blends as Alternative Fuels for Diesel Engines," Energies, MDPI, vol. 13(11), pages 1-16, June.
    3. Zhang, Zhiqing & Li, Jiangtao & Tian, Jie & Dong, Rui & Zou, Zhi & Gao, Sheng & Tan, Dongli, 2022. "Performance, combustion and emission characteristics investigations on a diesel engine fueled with diesel/ ethanol /n-butanol blends," Energy, Elsevier, vol. 249(C).
    4. Arkadiusz Jamrozik & Wojciech Tutak & Karol Grab-Rogaliński, 2021. "Combustion Stability, Performance and Emission Characteristics of a CI Engine Fueled with Diesel/n-Butanol Blends," Energies, MDPI, vol. 14(10), pages 1-20, May.
    5. Khatha Wathakit & Ekarong Sukjit & Chalita Kaewbuddee & Somkiat Maithomklang & Niti Klinkaew & Pansa Liplap & Weerachai Arjharn & Jiraphon Srisertpol, 2021. "Characterization and Impact of Waste Plastic Oil in a Variable Compression Ratio Diesel Engine," Energies, MDPI, vol. 14(8), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khatha Wathakit & Ekarong Sukjit & Chalita Kaewbuddee & Somkiat Maithomklang & Niti Klinkaew & Pansa Liplap & Weerachai Arjharn & Jiraphon Srisertpol, 2021. "Characterization and Impact of Waste Plastic Oil in a Variable Compression Ratio Diesel Engine," Energies, MDPI, vol. 14(8), pages 1-18, April.
    2. Navaneetha Krishnan Balakrishnan & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Huu Tho Nguyen, 2023. "An Experimental Investigation on the Characteristics of a Compression Ignition Engine Fuelled by Diesel-Palm Biodiesel–Ethanol/Propanol Based Ternary Blends," Energies, MDPI, vol. 16(2), pages 1-18, January.
    3. Somkiat Maithomklang & Ekarong Sukjit & Jiraphon Srisertpol & Niti Klinkaew & Khatha Wathakit, 2023. "Pyrolysis Oil Derived from Plastic Bottle Caps: Characterization of Combustion and Emissions in a Diesel Engine," Energies, MDPI, vol. 16(5), pages 1-21, March.
    4. Mirkarimi, S.M.R. & Bensaid, S. & Chiaramonti, D., 2022. "Conversion of mixed waste plastic into fuel for diesel engines through pyrolysis process: A review," Applied Energy, Elsevier, vol. 327(C).
    5. Huang, Jijiang & Veksha, Andrei & Chan, Wei Ping & Giannis, Apostolos & Lisak, Grzegorz, 2022. "Chemical recycling of plastic waste for sustainable material management: A prospective review on catalysts and processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    6. Cai, Tao & Zhao, Dan & Chan, Siew Hwa & Shahsavari, Mohammad, 2022. "Tailoring reduced mechanisms for predicting flame propagation and ignition characteristics in ammonia and ammonia/hydrogen mixtures," Energy, Elsevier, vol. 260(C).
    7. Myroslav Kindrachuk & Dmytro Volchenko & Alexander Balitskii & Karol F. Abramek & Mykola Volchenko & Olexiy Balitskii & Vasyl Skrypnyk & Dmytro Zhuravlev & Alina Yurchuk & Valerii Kolesnikov, 2021. "Wear Resistance of Spark Ignition Engine Piston Rings in Hydrogen-Containing Environments," Energies, MDPI, vol. 14(16), pages 1-13, August.
    8. Jie Hu & Wentong Cao & Feng Jiang & Lingling Hu & Qian Chen & Weiguang Zheng & Junming Zhou, 2023. "Study on Multi-Objective Optimization of Power System Parameters of Battery Electric Vehicles," Sustainability, MDPI, vol. 15(10), pages 1-23, May.
    9. Mendiburu, Andrés Z. & Lauermann, Carlos H. & Hayashi, Thamy C. & Mariños, Diego J. & Rodrigues da Costa, Roberto Berlini & Coronado, Christian J.R. & Roberts, Justo J. & de Carvalho, João A., 2022. "Ethanol as a renewable biofuel: Combustion characteristics and application in engines," Energy, Elsevier, vol. 257(C).
    10. Muthukumar, K. & Kasiraman, G., 2024. "Utilization of fuel energy from single-use Low-density polyethylene plastic waste on CI engine with hydrogen enrichment – An experimental study," Energy, Elsevier, vol. 289(C).
    11. Zhang, Zhiqing & Dong, Rui & Tan, Dongli & Duan, Lin & Jiang, Feng & Yao, Xiaoxue & Yang, Dixin & Hu, Jingyi & Zhang, Jian & Zhong, Weihuang & Zhao, Ziheng, 2023. "Effect of structural parameters on diesel particulate filter trapping performance of heavy-duty diesel engines based on grey correlation analysis," Energy, Elsevier, vol. 271(C).
    12. Tan, Dongli & Meng, Yujun & Tian, Jie & Zhang, Chengtao & Zhang, Zhiqing & Yang, Guanhua & Cui, Shuwan & Hu, Jingyi & Zhao, Ziheng, 2023. "Utilization of renewable and sustainable diesel/methanol/n-butanol (DMB) blends for reducing the engine emissions in a diesel engine with different pre-injection strategies," Energy, Elsevier, vol. 269(C).
    13. Das, Amar Kumar & Sahu, Santosh Kumar & Panda, Achyut Kumar, 2022. "Current status and prospects of alternate liquid transportation fuels in compression ignition engines: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    14. Vargün, Mustafa & Özsezen, Ahmet Necati, 2023. "Evaluation of the effect of the fuel injection phase on the combustion and exhaust characteristics in a diesel engine operating with alcohol-diesel mixtures," Energy, Elsevier, vol. 270(C).
    15. Hu, Wenyu & E, Jiaqiang & Tan, Yan & Zhang, Feng & Liao, Gaoliang, 2022. "Modified wind energy collection devices for harvesting convective wind energy from cars and trucks moving in the highway," Energy, Elsevier, vol. 247(C).
    16. Wan Mahari, Wan Adibah & Chong, Cheng Tung & Cheng, Chin Kui & Lee, Chern Leing & Hendrata, Kristian & Yuh Yek, Peter Nai & Ma, Nyuk Ling & Lam, Su Shiung, 2018. "Production of value-added liquid fuel via microwave co-pyrolysis of used frying oil and plastic waste," Energy, Elsevier, vol. 162(C), pages 309-317.
    17. José Javier López & Oscar A. de la Garza & Joaquín De la Morena & Simón Martínez-Martínez, 2021. "Influence of Cavitation in Common-Rail Diesel Nozzles on the Soot Formation Process through Measuring Soot Emissions," Energies, MDPI, vol. 14(19), pages 1-11, October.
    18. Yue Wang & Xin Zhang & Xinmiao Fan & Yanfei Li, 2023. "Simulation and Research of Methane Premixed Combustion Characteristics Based on Constant Volume Combustion Chamber with Different Ignition Modes," Energies, MDPI, vol. 16(20), pages 1-21, October.
    19. Andrzej Biessikirski & Dominik Czerwonka & Jolanta Biegańska & Łukasz Kuterasiński & Magdalena Ziąbka & Michał Dworzak & Michał Twardosz, 2020. "Research on the Possible Application of Polyolefin Waste-Derived Pyrolysis Oils for ANFO Manufacturing," Energies, MDPI, vol. 14(1), pages 1-15, December.
    20. Wang, Chen & Hu, Haowei & Zhang, Hao & Ji, Jie & Wang, Zhigang, 2022. "Experimental study of the horizontal subsurface flow trajectory and dynamic external radiation of flame spread over diesel," Energy, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1281-:d:1046238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.