IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v326y2022ics0306261922012247.html
   My bibliography  Save this article

Identifying optimal financial budget distributions for the low-carbon energy transition between emerging and developed countries

Author

Listed:
  • Kim, Yeong Jae
  • Soh, Moonwon
  • Cho, Seong-Hoon

Abstract

The decision to transition to low-carbon energy often needs to identify how efficiently to mitigate greenhouse gas emissions and supply energy. The limited studies that account for cost efficiency of energy supply and carbon reduction allow a decision maker to balance energy supply against the corresponding greenhouse gas emissions for a given energy transition. Despite the contributions of these studies, they do not differentiate the analysis based on regions’ or countries’ varying stages of economic and political development and types of energy transitions. The objective of this research is to identify an optimal mix of different types of low-carbon energy transitions between emerging and developed countries. By employing cost efficiency of energy supply and carbon reduction, the optimization problem addresses the multiple objectives of maximizing energy supply to help improve access to electricity and maximizing carbon reduction to reach the Paris Agreement goals. We identify optimal financial budget distributions that maximize the objectives for five low-carbon energy transition scenarios. We find that the overall transition to low-carbon energy sources reduces carbon emissions and meets growing energy demand more cost-effectively in emerging countries than it does in developed countries. These results offer motivation and justification for developed countries to increase resources and to support emerging countries’ low-carbon energy transition efforts from an efficiency perspective. We also find that replacing fossil fuels with nuclear or natural gas in emerging countries is highly efficient for managing carbon reduction and energy supply. Even with the safety concern for nuclear power and natural gas as a temporary solution for the low-carbon energy transition, we show how these two energy sources can still play significant roles as transition options for managing the cost efficiency of carbon reduction and energy supply in emerging countries.

Suggested Citation

  • Kim, Yeong Jae & Soh, Moonwon & Cho, Seong-Hoon, 2022. "Identifying optimal financial budget distributions for the low-carbon energy transition between emerging and developed countries," Applied Energy, Elsevier, vol. 326(C).
  • Handle: RePEc:eee:appene:v:326:y:2022:i:c:s0306261922012247
    DOI: 10.1016/j.apenergy.2022.119967
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922012247
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119967?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fang, Tao & Fang, Debin & Yu, Bolin, 2022. "Carbon emission efficiency of thermal power generation in China: Empirical evidence from the micro-perspective of power plants," Energy Policy, Elsevier, vol. 165(C).
    2. Soheil Shayegh & Valentina Bosetti & Simon Dietz & Johannes Emmerling & Christoph Hambel & Svenn Jensen & Holger Kraft & Massimo Tavoni & Christian Traeger & Rick Van der Ploeg, 2018. "Recalculating the Social Cost of Carbon," Working Papers 2018.19, Fondazione Eni Enrico Mattei.
    3. Peter A. Lang, 2017. "Nuclear Power Learning and Deployment Rates; Disruption and Global Benefits Forgone," Energies, MDPI, vol. 10(12), pages 1-21, December.
    4. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2015. "Global zero-carbon energy pathways using viable mixes of nuclear and renewables," Applied Energy, Elsevier, vol. 143(C), pages 451-459.
    5. J. David Hughes, 2013. "A reality check on the shale revolution," Nature, Nature, vol. 494(7437), pages 307-308, February.
    6. Soheil Shayegh & Valentina Bosetti & Simon Dietz & Johannes Emmerling & Christoph Hambel & Svenn Jensen & Holger Kraft & Massimo Tavoni & Christian Traeger & Rick Van der Ploeg, 2018. "Recalculating the Social Cost of Carbon," Working Papers 2018.19, Fondazione Eni Enrico Mattei.
    7. Arnette, Andrew & Zobel, Christopher W., 2012. "An optimization model for regional renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4606-4615.
    8. Ovaere, Marten & Proost, Stef, 2022. "Cost-effective reduction of fossil energy use in the European transport sector: An assessment of the Fit for 55 Package," Energy Policy, Elsevier, vol. 168(C).
    9. Brookes, Naomi J. & Locatelli, Giorgio, 2015. "Power plants as megaprojects: Using empirics to shape policy, planning, and construction management," Utilities Policy, Elsevier, vol. 36(C), pages 57-66.
    10. Kenneth Gillingham & James H. Stock, 2018. "The Cost of Reducing Greenhouse Gas Emissions," Journal of Economic Perspectives, American Economic Association, vol. 32(4), pages 53-72, Fall.
    11. K Miettinen & M M Mäkelä, 1999. "Comparative evaluation of some interactive reference point-based methods for multi-objective optimisation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(9), pages 949-959, September.
    12. Peter A. Lang, 2017. "Nuclear power learning and deployment rates: disruption and global benefits forgone," CAMA Working Papers 2017-04, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    13. Gokul C. Iyer & Leon E. Clarke & James A. Edmonds & Brian P. Flannery & Nathan E. Hultman & Haewon C. McJeon & David G. Victor, 2015. "Improved representation of investment decisions in assessments of CO2 mitigation," Nature Climate Change, Nature, vol. 5(5), pages 436-440, May.
    14. C. Wilson & A. Grubler & N. Bauer & V. Krey & K. Riahi, 2013. "Future capacity growth of energy technologies: are scenarios consistent with historical evidence?," Climatic Change, Springer, vol. 118(2), pages 381-395, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iwona Bąk & Katarzyna Cheba, 2022. "Green Transformation: Applying Statistical Data Analysis to a Systematic Literature Review," Energies, MDPI, vol. 16(1), pages 1-22, December.
    2. Wang, Haibing & Zhu, Libo & Sun, Weiqing & Khan, Muhammad Qasim & Liu, Bin, 2024. "Research on energy pricing of the hydrogen refueling station based on master-slave game in multi-market," Applied Energy, Elsevier, vol. 373(C).
    3. Li, Guoxiang & Wu, Haoyue & Jiang, Jieshu & Zong, Qingqing, 2023. "Digital finance and the low-carbon energy transition (LCET) from the perspective of capital-biased technical progress," Energy Economics, Elsevier, vol. 120(C).
    4. Yuan, Zijun & Zhang, Heng & Cheng, Haozhong & Zhang, Shenxi & Zhang, Xiaohu & Lu, Jianzhong, 2024. "Low-carbon oriented power system expansion planning considering the long-term uncertainties of transition tasks," Energy, Elsevier, vol. 307(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bi-Huei Tsai & Yao-Min Huang, 2023. "Comparing the Substitution of Nuclear Energy or Renewable Energy for Fossil Fuels between the United States and Africa," Sustainability, MDPI, vol. 15(13), pages 1-16, June.
    2. Wang, Ni & Verzijlbergh, Remco A. & Heijnen, Petra W. & Herder, Paulien M., 2020. "A spatially explicit planning approach for power systems with a high share of renewable energy sources," Applied Energy, Elsevier, vol. 260(C).
    3. Benmir, Ghassane & Jaccard, Ivan & Vermandel, Gauthier, 2020. "Green asset pricing," Working Paper Series 2477, European Central Bank.
    4. William Bodel & Kevin Hesketh & Grace McGlynn & Juan Matthews & Gregg Butler, 2021. "Generic Feasibility Assessment: Helping to Choose the Nuclear Piece of the Net Zero Jigsaw," Energies, MDPI, vol. 14(5), pages 1-17, February.
    5. Reinhard Haas & Marlene Sayer & Amela Ajanovic & Hans Auer, 2023. "Technological learning: Lessons learned on energy technologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(2), March.
    6. Hossam A. Gabbar & Muhammad R. Abdussami & Md. Ibrahim Adham, 2020. "Micro Nuclear Reactors: Potential Replacements for Diesel Gensets within Micro Energy Grids," Energies, MDPI, vol. 13(19), pages 1-38, October.
    7. Littlejohn, Christina & Proost, Stef, 2022. "What role for electric vehicles in the decarbonization of the car transport sector in Europe?," Economics of Transportation, Elsevier, vol. 32(C).
    8. Cotterman, Turner & Small, Mitchell J. & Wilson, Stephen & Abdulla, Ahmed & Wong-Parodi, Gabrielle, 2021. "Applying risk tolerance and socio-technical dynamics for more realistic energy transition pathways," Applied Energy, Elsevier, vol. 291(C).
    9. Katarzyna Zawalińska & Jouko Kinnunen & Piotr Gradziuk & Dorota Celińska-Janowicz, 2020. "To Whom Should We Grant a Power Plant? Economic Effects of Investment in Nuclear Energy in Poland," Energies, MDPI, vol. 13(11), pages 1-26, May.
    10. Minwoo Hyun & Aleh Cherp & Jessica Jewell & Yeong Jae Kim & Jiyong Eom, 2021. "Feasibility trade-offs in decarbonisation of power sector with high coal dependence: A case of Korea," Papers 2111.02872, arXiv.org.
    11. Choi, Donghyun & Kim, Yeong Jae, 2023. "Local and global experience curves for lumpy and granular energy technologies," Energy Policy, Elsevier, vol. 174(C).
    12. Jie Zhang & Xizhe Li & Weijun Shen & Shusheng Gao & Huaxun Liu & Liyou Ye & Feifei Fang, 2020. "Study of the Effect of Movable Water Saturation on Gas Production in Tight Sandstone Gas Reservoirs," Energies, MDPI, vol. 13(18), pages 1-14, September.
    13. Ladislava Volková, 2022. "Carbon reporting: evidence from the Czech financial sector [Uhlíková stopa: Udržitelné výkaznictví českého finančního sektoru v ČR]," Český finanční a účetní časopis, Prague University of Economics and Business, vol. 2022(2), pages 69-87.
    14. Jonathan Colmer & Ralf Martin & Mirabelle Muûls & Ulrich J. Wagner, 2020. "Does pricing carbon mitigate climate change? Firm-level evidence from the European Union emissions trading scheme," CEP Discussion Papers dp1728, Centre for Economic Performance, LSE.
    15. Sashwat Roy & Parikhit Sinha & Syed Ismat Shah, 2020. "Assessing the Techno-Economics and Environmental Attributes of Utility-Scale PV with Battery Energy Storage Systems (PVS) Compared to Conventional Gas Peakers for Providing Firm Capacity in California," Energies, MDPI, vol. 13(2), pages 1-24, January.
    16. Bhatt, Ankit & Sharma, M.P. & Saini, R.P., 2016. "Feasibility and sensitivity analysis of an off-grid micro hydro–photovoltaic–biomass and biogas–diesel–battery hybrid energy system for a remote area in Uttarakhand state, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 53-69.
    17. Mayeres, Inge & Proost, Stef & Delhaye, Eef & Novelli, Philippe & Conijn, Sjaak & Gómez-Jiménez, Inmaculada & Rivas-Brousse, Daniel, 2023. "Climate ambitions for European aviation: Where can sustainable aviation fuels bring us?," Energy Policy, Elsevier, vol. 175(C).
    18. Yicong Lin & Hanno Reuvers, 2020. "Cointegrating Polynomial Regressions with Power Law Trends: Environmental Kuznets Curve or Omitted Time Effects?," Papers 2009.02262, arXiv.org, revised Dec 2021.
    19. Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2018. "Pathways toward zero-carbon electricity required for climate stabilization," Applied Energy, Elsevier, vol. 225(C), pages 884-901.
    20. Nock, Destenie & Baker, Erin, 2019. "Holistic multi-criteria decision analysis evaluation of sustainable electric generation portfolios: New England case study," Applied Energy, Elsevier, vol. 242(C), pages 655-673.

    More about this item

    Keywords

    Carbon reduction; Energy supply; Low-carbon energy transition; Optimal financial budget distributions; Sustainable development scenarios;
    All these keywords.

    JEL classification:

    • Q01 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Sustainable Development
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:326:y:2022:i:c:s0306261922012247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.