IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i5p1229-d504886.html
   My bibliography  Save this article

Generic Feasibility Assessment: Helping to Choose the Nuclear Piece of the Net Zero Jigsaw

Author

Listed:
  • William Bodel

    (Dalton Nuclear Institute, Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL, UK)

  • Kevin Hesketh

    (National Nuclear Laboratory, Preston Laboratory, Springfields, Salwick, Preston PR4 0XJ, UK)

  • Grace McGlynn

    (Dalton Nuclear Institute, Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL, UK)

  • Juan Matthews

    (Dalton Nuclear Institute, Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL, UK)

  • Gregg Butler

    (Dalton Nuclear Institute, Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL, UK)

Abstract

The United Kingdom has declared a climate change policy of 100% reduction in carbon dioxide emissions by 2050. Efforts thus far have been limited solely to electricity generation methods. While progress has been admirable, effort now must be directed at the nation’s non-electrical energy use. Nuclear energy is an essential part of any energy future, since it is low-carbon, firm and supplies synchronous electricity; however the nation’s nuclear strategy to date has been erratic, costly and lacking in strategic oversight. A multitude of reactor designs are on offer for potential uptake, and decision-makers must have clarity of vision on what these systems must deliver before forming a strategy. Choosing between these systems, given the uncharted energy future faced by the UK is a daunting prospect. Generic feasibility assessment offers a tool for decision-makers to assist them in selecting the most suitable nuclear system for chosen future conditions. Generic feasibility assessment offers an alternative to traditional multi-attribute decision analyses, which can be confusing to even committed stakeholders when large numbers of attributes are weighted and compiled. Generic feasibility assessment forms part of a toolkit which will be of utility in achieving net zero by 2050, given the short time that remains.

Suggested Citation

  • William Bodel & Kevin Hesketh & Grace McGlynn & Juan Matthews & Gregg Butler, 2021. "Generic Feasibility Assessment: Helping to Choose the Nuclear Piece of the Net Zero Jigsaw," Energies, MDPI, vol. 14(5), pages 1-17, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1229-:d:504886
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/5/1229/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/5/1229/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hondo, Hiroki, 2005. "Life cycle GHG emission analysis of power generation systems: Japanese case," Energy, Elsevier, vol. 30(11), pages 2042-2056.
    2. Rush, Howard J. & MacKerron, Gordon & Surrey, John, 1977. "The advanced gas-cooled reactor : A case study in reactor choice," Energy Policy, Elsevier, vol. 5(2), pages 95-105, June.
    3. Peter A. Lang, 2017. "Nuclear Power Learning and Deployment Rates; Disruption and Global Benefits Forgone," Energies, MDPI, vol. 10(12), pages 1-21, December.
    4. Peter A. Lang, 2017. "Nuclear power learning and deployment rates: disruption and global benefits forgone," CAMA Working Papers 2017-04, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alistair F. Holdsworth & Harry Eccles & Clint A. Sharrad & Kathryn George, 2023. "Spent Nuclear Fuel—Waste or Resource? The Potential of Strategic Materials Recovery during Recycle for Sustainability and Advanced Waste Management," Waste, MDPI, vol. 1(1), pages 1-15, January.
    2. Robin Taylor & William Bodel & Gregg Butler, 2022. "A Review of Environmental and Economic Implications of Closing the Nuclear Fuel Cycle—Part Two: Economic Impacts," Energies, MDPI, vol. 15(7), pages 1-31, March.
    3. Robin Taylor & William Bodel & Anthony Banford & Gregg Butler & Francis Livens, 2024. "Sustainability of Nuclear Energy—A Critical Review from a UK Perspective," Sustainability, MDPI, vol. 16(24), pages 1-50, December.
    4. Robin Taylor & William Bodel & Laurence Stamford & Gregg Butler, 2022. "A Review of Environmental and Economic Implications of Closing the Nuclear Fuel Cycle—Part One: Wastes and Environmental Impacts," Energies, MDPI, vol. 15(4), pages 1-35, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bi-Huei Tsai & Yao-Min Huang, 2023. "Comparing the Substitution of Nuclear Energy or Renewable Energy for Fossil Fuels between the United States and Africa," Sustainability, MDPI, vol. 15(13), pages 1-16, June.
    2. Reinhard Haas & Marlene Sayer & Amela Ajanovic & Hans Auer, 2023. "Technological learning: Lessons learned on energy technologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(2), March.
    3. Hossam A. Gabbar & Muhammad R. Abdussami & Md. Ibrahim Adham, 2020. "Micro Nuclear Reactors: Potential Replacements for Diesel Gensets within Micro Energy Grids," Energies, MDPI, vol. 13(19), pages 1-38, October.
    4. Katarzyna Zawalińska & Jouko Kinnunen & Piotr Gradziuk & Dorota Celińska-Janowicz, 2020. "To Whom Should We Grant a Power Plant? Economic Effects of Investment in Nuclear Energy in Poland," Energies, MDPI, vol. 13(11), pages 1-26, May.
    5. Choi, Donghyun & Kim, Yeong Jae, 2023. "Local and global experience curves for lumpy and granular energy technologies," Energy Policy, Elsevier, vol. 174(C).
    6. Kim, Yeong Jae & Soh, Moonwon & Cho, Seong-Hoon, 2022. "Identifying optimal financial budget distributions for the low-carbon energy transition between emerging and developed countries," Applied Energy, Elsevier, vol. 326(C).
    7. Fangyi Li & Zhaoyang Ye & Xilin Xiao & Dawei Ma, 2019. "Environmental Benefits of Stock Evolution of Coal-Fired Power Generators in China," Sustainability, MDPI, vol. 11(19), pages 1-17, October.
    8. Jānis Krūmiņš & Māris Kļaviņš, 2023. "Investigating the Potential of Nuclear Energy in Achieving a Carbon-Free Energy Future," Energies, MDPI, vol. 16(9), pages 1-31, April.
    9. Odeh, Naser A. & Cockerill, Timothy T., 2008. "Life cycle GHG assessment of fossil fuel power plants with carbon capture and storage," Energy Policy, Elsevier, vol. 36(1), pages 367-380, January.
    10. Shuhao Chang & Qiancheng Wang & Haihua Hu & Zijian Ding & Hansen Guo, 2018. "An NNwC MPPT-Based Energy Supply Solution for Sensor Nodes in Buildings and Its Feasibility Study," Energies, MDPI, vol. 12(1), pages 1-20, December.
    11. Joshua M. Pearce, 2012. "Limitations of Nuclear Power as a Sustainable Energy Source," Sustainability, MDPI, vol. 4(6), pages 1-15, June.
    12. L. Hay & A. H. B. Duffy & R. I. Whitfield, 2017. "The S‐Cycle Performance Matrix: Supporting Comprehensive Sustainability Performance Evaluation of Technical Systems," Systems Engineering, John Wiley & Sons, vol. 20(1), pages 45-70, January.
    13. Cha, Kyounghoon & Lim, Songtak & Hur, Tak, 2008. "Eco-efficiency approach for global warming in the context of Kyoto Mechanism," Ecological Economics, Elsevier, vol. 67(2), pages 274-280, September.
    14. Wu, X.D. & Guo, J.L. & Chen, G.Q., 2018. "The striking amount of carbon emissions by the construction stage of coal-fired power generation system in China," Energy Policy, Elsevier, vol. 117(C), pages 358-369.
    15. Yu, Shiwei & Wei, Yi-Ming & Guo, Haixiang & Ding, Liping, 2014. "Carbon emission coefficient measurement of the coal-to-power energy chain in China," Applied Energy, Elsevier, vol. 114(C), pages 290-300.
    16. Varun & Prakash, Ravi & Bhat, I.K., 2010. "A figure of merit for evaluating sustainability of renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(6), pages 1640-1643, August.
    17. Li, Jinying & Li, Sisi & Wu, Fan, 2020. "Research on carbon emission reduction benefit of wind power project based on life cycle assessment theory," Renewable Energy, Elsevier, vol. 155(C), pages 456-468.
    18. Marimuthu, C. & Kirubakaran, V., 2013. "Carbon pay back period for solar and wind energy project installed in India: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 80-90.
    19. Graus, Wina & Worrell, Ernst, 2011. "Methods for calculating CO2 intensity of power generation and consumption: A global perspective," Energy Policy, Elsevier, vol. 39(2), pages 613-627, February.
    20. Catalina Ferat Toscano & Cecilia Martin-del-Campo & Gabriela Moeller-Chavez & Gabriel Leon de los Santos & Juan-Luis François & Daniel Revollo Fernandez, 2019. "Life Cycle Assessment of a Combined-Cycle Gas Turbine with a Focus on the Chemicals Used in Water Conditioning," Sustainability, MDPI, vol. 11(10), pages 1-24, May.

    More about this item

    Keywords

    nuclear; reactor; choice; net zero; policy;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1229-:d:504886. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.