IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-021-27916-y.html
   My bibliography  Save this article

A record thermoelectric efficiency in tellurium-free modules for low-grade waste heat recovery

Author

Listed:
  • Zhonglin Bu

    (School of Materials Science and Engineering, Tongji Univ.)

  • Xinyue Zhang

    (School of Materials Science and Engineering, Tongji Univ.)

  • Yixin Hu

    (School of Materials Science and Engineering, Tongji Univ.)

  • Zhiwei Chen

    (School of Materials Science and Engineering, Tongji Univ.)

  • Siqi Lin

    (School of Materials Science and Engineering, Tongji Univ.)

  • Wen Li

    (School of Materials Science and Engineering, Tongji Univ.)

  • Chong Xiao

    (University of Science and Technology of China)

  • Yanzhong Pei

    (School of Materials Science and Engineering, Tongji Univ.)

Abstract

Low-grade heat accounts for >50% of the total dissipated heat sources in industries. An efficient recovery of low-grade heat into useful electricity not only reduces the consumption of fossil-fuels but also releases the subsequential environmental-crisis. Thermoelectricity offers an ideal solution, yet low-temperature efficient materials have continuously been limited to Bi2Te3-alloys since the discovery in 1950s. Scarcity of tellurium and the strong property anisotropy cause high-cost in both raw-materials and synthesis/processing. Here we demonstrate cheap polycrystalline antimonides for even more efficient thermoelectric waste-heat recovery within 600 K than conventional tellurides. This is enabled by a design of Ni/Fe/Mg3SbBi and Ni/Sb/CdSb contacts for both a prevention of chemical diffusion and a low interfacial resistivity, realizing a record and stable module efficiency at a temperature difference of 270 K. In addition, the raw-material cost to the output power ratio in this work is reduced to be only 1/15 of that of conventional Bi2Te3-modules.

Suggested Citation

  • Zhonglin Bu & Xinyue Zhang & Yixin Hu & Zhiwei Chen & Siqi Lin & Wen Li & Chong Xiao & Yanzhong Pei, 2022. "A record thermoelectric efficiency in tellurium-free modules for low-grade waste heat recovery," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-021-27916-y
    DOI: 10.1038/s41467-021-27916-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27916-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27916-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, L. & Ji, Y. & Shi, W.K. & Fang, M.X. & Wang, T. & Zhang, X.J., 2023. "Adsorption heat/mass conversion cycle for carbon capture:Concept, thermodynamics and perspective," Energy, Elsevier, vol. 278(PA).
    2. Jingdan Lei & Kunpeng Zhao & Jincheng Liao & Shiqi Yang & Ziming Zhang & Tian-Ran Wei & Pengfei Qiu & Min Zhu & Lidong Chen & Xun Shi, 2024. "Approaching crystal’s limit of thermoelectrics by nano-sintering-aid at grain boundaries," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Xu, Haowei & Zhang, Qiang & Yi, Longbing & Huang, Shaolin & Yang, Hao & Li, Yanan & Guo, Zhe & Hu, Haoyang & Sun, Peng & Tan, Xiaojian & Liu, Guo-qiang & Song, Kun & Jiang, Jun, 2022. "High performance of Bi2Te3-based thermoelectric generator owing to pressure in fabrication process," Applied Energy, Elsevier, vol. 326(C).
    4. Yang, Wei & Bao, Jingjing & Liu, Hongtao & Zhang, Jun & Guo, Lin, 2023. "Low-grade heat to hydrogen: Current technologies, challenges and prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    5. Luo, Baojun & Xiang, Quanwei & Su, Xiaoxue & Zhang, Shunfeng & Yan, Piaopiao & Liu, Jingping & Li, Ruijie, 2024. "A novel cycle engine for low-grade heat utilization: Principle, conceptual design and thermodynamic analysis," Energy, Elsevier, vol. 301(C).
    6. Hangtian Zhu & Wenjie Li & Amin Nozariasbmarz & Na Liu & Yu Zhang & Shashank Priya & Bed Poudel, 2023. "Half-Heusler alloys as emerging high power density thermoelectric cooling materials," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Yuntian Fu & Xin Ai & Zhongliang Hu & Shuhan Zhao & Xiaofang Lu & Jian Huang & Aibin Huang & Lianjun Wang & Qihao Zhang & Wan Jiang, 2024. "Interface kinetic manipulation enabling efficient and reliable Mg3Sb2 thermoelectrics," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Jian Li & Qingfeng Song & Ruiheng Liu & Hongliang Dong & Qihao Zhang & Xun Shi & Shengqiang Bai & Lidong Chen, 2022. "Thermoelectric Performance Optimization of n-Type La 3− x Sm x Te 4 /Ni Composites via Sm Doping," Energies, MDPI, vol. 15(7), pages 1-9, March.
    9. Seung Choi, Han & Hur, Sunghoon & Kumar, Ajeet & Song, Hyunseok & Min Baik, Jeong & Song, Hyun-Cheol & Ryu, Jungho, 2023. "Continuous pyroelectric energy generation with cyclic magnetic phase transition for low-grade thermal energy harvesting," Applied Energy, Elsevier, vol. 344(C).
    10. Tian, Tong & Wang, Xinyue & Liu, Yang & Yang, Xuan & Sun, Bo & Li, Ji, 2023. "Nano-engineering enabled heat pipe battery: A powerful heat transfer infrastructure with capability of power generation," Applied Energy, Elsevier, vol. 348(C).
    11. Demeke, Wabi & Ryu, Byungki & Ryu, Seunghwa, 2024. "Machine learning-based optimization of segmented thermoelectric power generators using temperature-dependent performance properties," Applied Energy, Elsevier, vol. 355(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-021-27916-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.