IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v325y2022ics030626192201100x.html
   My bibliography  Save this article

Experimental investigation on oil transport, heat transfer and distribution performances of R32/oil mixture in microchannel evaporators

Author

Listed:
  • Zeng, Weijie
  • Zhang, Zhiting
  • Hu, Jinting
  • Gu, Bo
  • Tian, Zhen

Abstract

The aim of this study is to experimentally investigate the oil influences on transport, heat transfer and distribution performances of microchannel evaporator. Mixture of R32 and PVE VG68 oil was selected as the working fluid, and two single-pass microchannel heat exchangers were used as test samples. The experiments were conducted in mass flux range of 20–50 kg·m−2·s−1, nominal oil mass fraction (OMFno) range of 0–6% and inlet local quality range of 0.1–0.16 at the saturation temperature of 12 °C. The result indicated that the oil retention volume ratio (ORVR) increases with the increments in oil mass fraction, inlet quality and decrease in mass flux. The upper outlet header tended to have remarkable oil retention and the oil transport behavior in header was analyzed. In most cases, the heat transfer was suppressed by the addition of oil. Heat transfer enhancement was observed at low oil mass fraction and high inlet quality conditions. The heat transfer factor ranged from 0.95 to 1.03, which indicated that the oil effect on heat transfer was not significant. Although the presence of oil inhibited the saturated boiling heat transfer coefficient, it could promote the heat transfer at superheat region. Struggle of inhibition and enhancement effects resulted in slight oil effect on heat transfer performance. An infrared-image-based distribution rating parameter was utilized to quantify the distribution performance. The oil effect on flow distribution was slight and the flow distribution deteriorated as the mass flux increased. A theoretical model called liquid immersion model was adopted to describe the flow regime and distribution mechanism in inlet header.

Suggested Citation

  • Zeng, Weijie & Zhang, Zhiting & Hu, Jinting & Gu, Bo & Tian, Zhen, 2022. "Experimental investigation on oil transport, heat transfer and distribution performances of R32/oil mixture in microchannel evaporators," Applied Energy, Elsevier, vol. 325(C).
  • Handle: RePEc:eee:appene:v:325:y:2022:i:c:s030626192201100x
    DOI: 10.1016/j.apenergy.2022.119829
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192201100X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119829?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Krzywanski, J. & Czakiert, T. & Nowak, W. & Shimizu, T. & Zylka, A. & Idziak, K. & Sosnowski, M. & Grabowska, K., 2022. "Gaseous emissions from advanced CLC and oxyfuel fluidized bed combustion of coal and biomass in a complex geometry facility:A comprehensive model," Energy, Elsevier, vol. 251(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Wenhua & Li, Feng & Zhao, Rijing & Huang, Dong & Zhao, Yongfeng, 2024. "Predicting evaporation heat transfer coefficient distribution in multi-path alternating-laminated-microchannel-tube (ALMT) heat exchanger based on infrared thermography," Applied Energy, Elsevier, vol. 364(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng, Xiangdong & Liu, Shanjian & Yue, Kang & Wei, Heng & Bi, Dongmei & Zhao, Wenjing, 2023. "Insight into the promotional effect of Mn-modified nitrogenous biochar on the NH3-SCR denitrification activity at low temperatures," Energy, Elsevier, vol. 285(C).
    2. Xiaoliang Yu & Jin Yan & Rongyue Sun & Lin Mei & Yanmin Li & Shuyuan Wang & Fan Wang & Yicheng Gu, 2023. "An Experimental Study on SO 2 Emission and Ash Deposition Characteristics of High Alkali Red Mud under Large Proportional Co-Combustion Conditions in Fluidized Bed," Energies, MDPI, vol. 16(6), pages 1-17, March.
    3. Wen, Xiaoqiang & Li, Kaichuang & Wang, Jianguo, 2023. "NOx emission predicting for coal-fired boilers based on ensemble learning methods and optimized base learners," Energy, Elsevier, vol. 264(C).
    4. Yu Jiang & Zihua Tang & Xiaoyu Zhang & Chao Wang & Guoliang Song & Qinggang Lyu, 2023. "Comparative Analysis of Combustion Characteristics of a CFB Boiler during the Changes Process between High-Rated Loads and Low-Rated Loads," Energies, MDPI, vol. 16(17), pages 1-15, August.
    5. Ma, Liyang & Zhang, Lan & Wang, Deming & Xin, Haihui & Ma, Qiulin, 2023. "Effect of oxygen-supply on the reburning reactivity of pyrolyzed residual from sub-bituminous coal: A reactive force field molecular dynamics simulation," Energy, Elsevier, vol. 283(C).
    6. Ziqiang Yang & Fenghai Li & Mingjie Ma & Xuefei Liu & Hongli Fan & Zhenzhu Li & Yong Wang & Yitian Fang, 2023. "Regulation Mechanism of Solid Waste on Ash Fusion Characteristics of Sorghum Straw under O 2 /CO 2 Atmosphere," Energies, MDPI, vol. 16(20), pages 1-17, October.
    7. Zhu, Shujun & Hui, Jicheng & Lyu, Qinggang & Ouyang, Ziqu & Zeng, Xiongwei & Zhu, Jianguo & Liu, Jingzhang & Cao, Xiaoyang & Zhang, Xiaoyu & Ding, Hongliang & Liu, Yuhua, 2023. "Experimental study on pulverized coal swirl-opposed combustion preheated by a circulating fluidized bed. Part A. Wide-load operation and low-NOx emission characteristics," Energy, Elsevier, vol. 284(C).
    8. Yu, Haoyang & Gao, Mingming & Zhang, Hongfu & Yue, Guangxi & Zhang, Zhen, 2023. "Data-driven optimization of pollutant emission and operational efficiency for circulating fluidized bed unit," Energy, Elsevier, vol. 281(C).
    9. Adeel Luqman & Qingyu Zhang & Shalini Talwar & Meena Bhatia & Amandeep Dhir, 2024. "Artificial intelligence and corporate carbon neutrality: A qualitative exploration," Business Strategy and the Environment, Wiley Blackwell, vol. 33(5), pages 3986-4003, July.
    10. Han, Zhezhe & Tang, Xiaoyu & Xie, Yue & Liang, Ruiyu & Bao, Yongqiang, 2024. "Prediction of heavy-oil combustion emissions with a semi-supervised learning model considering variable operation conditions," Energy, Elsevier, vol. 288(C).
    11. Chen, Lingen & Shi, Shuangshuang & Ge, Yanlin & Feng, Huijun, 2023. "Ecological function performance analysis and multi-objective optimization for an endoreversible four-reservoir chemical pump," Energy, Elsevier, vol. 282(C).
    12. Jaroslaw Krzywanski & Tomasz Czakiert & Anna Zylka & Wojciech Nowak & Marcin Sosnowski & Karolina Grabowska & Dorian Skrobek & Karol Sztekler & Anna Kulakowska & Waqar Muhammad Ashraf & Yunfei Gao, 2022. "Modelling of SO 2 and NO x Emissions from Coal and Biomass Combustion in Air-Firing, Oxyfuel, iG-CLC, and CLOU Conditions by Fuzzy Logic Approach," Energies, MDPI, vol. 15(21), pages 1-17, October.
    13. Manish Meena & Hrishikesh Kumar & Nitin Dutt Chaturvedi & Andrey A. Kovalev & Vadim Bolshev & Dmitriy A. Kovalev & Prakash Kumar Sarangi & Aakash Chawade & Manish Singh Rajput & Vivekanand Vivekanand , 2023. "Biomass Gasification and Applied Intelligent Retrieval in Modeling," Energies, MDPI, vol. 16(18), pages 1-21, September.
    14. Güleç, Fatih & Okolie, Jude A. & Erdogan, Ahmet, 2023. "Techno-economic feasibility of fluid catalytic cracking unit integrated chemical looping combustion – A novel approach for CO2 capture," Energy, Elsevier, vol. 284(C).
    15. Muhammad Usman & Muhammad Ali Ijaz Malik & Rehmat Bashir & Fahid Riaz & Muhammad Juniad Raza & Khubaib Suleman & Abd-ul Rehman & Waqar Muhammad Ashraf & Jaroslaw Krzywanski, 2022. "Enviro-Economic Assessment of HHO–CNG Mixture Utilization in Spark Ignition Engine for Performance and Environmental Sustainability," Energies, MDPI, vol. 15(21), pages 1-15, November.
    16. Kijo-Kleczkowska, Agnieszka & Gnatowski, Adam & Krzywanski, Jaroslaw & Gajek, Marcin & Szumera, Magdalena & Tora, Barbara & Kogut, Krzysztof & Knaś, Krzysztof, 2024. "Experimental research and prediction of heat generation during plastics, coal and biomass waste combustion using thermal analysis methods," Energy, Elsevier, vol. 290(C).
    17. Sathish, Thanikodi & Surakasi, Raviteja & KishoreT, Lakshmana & Rathinasamy, Saravanan & Ağbulut, Ümit & Shaik, Saboor & Park, Sung Goon & Afzal, Asif, 2023. "Waste to fuel: Pyrolysis of waste transformer oil and its evaluation as alternative fuel along with different nanoparticles in CI engine with exhaust gas recirculation," Energy, Elsevier, vol. 267(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:325:y:2022:i:c:s030626192201100x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.