IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p8253-d963759.html
   My bibliography  Save this article

Enviro-Economic Assessment of HHO–CNG Mixture Utilization in Spark Ignition Engine for Performance and Environmental Sustainability

Author

Listed:
  • Muhammad Usman

    (Department of Mechanical Engineering, University of Engineering and Technology, GT Road, Lahore 54890, Pakistan)

  • Muhammad Ali Ijaz Malik

    (Department of Mechanical Engineering, University of Engineering and Technology, GT Road, Lahore 54890, Pakistan)

  • Rehmat Bashir

    (Department of Mechanical Engineering, University of Engineering and Technology, GT Road, Lahore 54890, Pakistan)

  • Fahid Riaz

    (Department of Mechanical Engineering, Abu Dhabi University, Abu Dhabi P.O. Box 59911, United Arab Emirates)

  • Muhammad Juniad Raza

    (Department of Mechanical Engineering, RCET University of Engineering and Technology, Gujranwala 43741, Pakistan)

  • Khubaib Suleman

    (Department of Mechanical Engineering, RCET University of Engineering and Technology, Gujranwala 43741, Pakistan)

  • Abd-ul Rehman

    (Department of Mechanical Engineering, RCET University of Engineering and Technology, Gujranwala 43741, Pakistan)

  • Waqar Muhammad Ashraf

    (Centre for Process Systems Engineering, Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK)

  • Jaroslaw Krzywanski

    (Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 42-200 Częstochowa, Poland)

Abstract

Road transportation has received the attention of researchers due to its higher carbon footprint. Alternative fuels present major advantages in terms of environmental sustainability. For this reason, an enviro-economic analysis of alternative fuels carries great significance. However, scarce attempts have been rendered in order to ascertain the impact of a hydroxy gas (HHO) and compressed natural gas (CNG) mixture on sustainable environmental development. The current study addresses this issue by employing an HHO–CNG mixture and gasoline in spark ignition (SI) engines for the purposes of performance and environmental pollutants measurement. Then, engine emission data were substituted for Weibull distribution in order to establish suitability for 50 and 95% confidence intervals (CIs). The mixture outperformed gasoline in terms of brake-specific fuel consumption (BSFC) and emission contents. On average, hydroxy gas with CNG produced 10.59% lower oxides of nitrogen (NO X ) comparative to gasoline. Finally, the enviro-economic analysis also turned out to be in favor of the hydroxy gas mixture owing to a saving of 36.14% in USD/year due to 27.87% lower production of carbon dioxide (CO 2 ) emission.

Suggested Citation

  • Muhammad Usman & Muhammad Ali Ijaz Malik & Rehmat Bashir & Fahid Riaz & Muhammad Juniad Raza & Khubaib Suleman & Abd-ul Rehman & Waqar Muhammad Ashraf & Jaroslaw Krzywanski, 2022. "Enviro-Economic Assessment of HHO–CNG Mixture Utilization in Spark Ignition Engine for Performance and Environmental Sustainability," Energies, MDPI, vol. 15(21), pages 1-15, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8253-:d:963759
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/8253/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/8253/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Karol Sztekler & Wojciech Kalawa & Lukasz Mika & Jaroslaw Krzywanski & Karolina Grabowska & Marcin Sosnowski & Wojciech Nowak & Tomasz Siwek & Artur Bieniek, 2020. "Modeling of a Combined Cycle Gas Turbine Integrated with an Adsorption Chiller," Energies, MDPI, vol. 13(3), pages 1-12, January.
    2. Tang, Chor Foon & Tan, Bee Wah, 2015. "The impact of energy consumption, income and foreign direct investment on carbon dioxide emissions in Vietnam," Energy, Elsevier, vol. 79(C), pages 447-454.
    3. Krzywanski, J. & Czakiert, T. & Nowak, W. & Shimizu, T. & Zylka, A. & Idziak, K. & Sosnowski, M. & Grabowska, K., 2022. "Gaseous emissions from advanced CLC and oxyfuel fluidized bed combustion of coal and biomass in a complex geometry facility:A comprehensive model," Energy, Elsevier, vol. 251(C).
    4. Tomasz Czakiert & Jaroslaw Krzywanski & Anna Zylka & Wojciech Nowak, 2022. "Chemical Looping Combustion: A Brief Overview," Energies, MDPI, vol. 15(4), pages 1-19, February.
    5. Park, Cheolwoong & Kim, Changgi & Lee, Sangho & Lee, Sunyoup & Lee, Janghee, 2019. "Comparative evaluation of performance and emissions of CNG engine for heavy-duty vehicles fueled with various caloric natural gases," Energy, Elsevier, vol. 174(C), pages 1-9.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Usman & Muhammad Ali Ijaz Malik & Tariq Nawaz Chaudhary & Fahid Riaz & Sohaib Raza & Muhammad Abubakar & Farrukh Ahmad Malik & Hafiz Muhammad Ahmad & Yasser Fouad & Muhammad Mujtaba Abbas & M, 2023. "Comparative Assessment of Ethanol and Methanol–Ethanol Blends with Gasoline in SI Engine for Sustainable Development," Sustainability, MDPI, vol. 15(9), pages 1-21, May.
    2. H S, Anantha Padmanabha & Mohanty, Dillip Kumar, 2024. "Enhancement of combustion, performance and emission characteristics of diesel engines fuelled with jatropha-karanja biodiesel using EGM and TGME as additive," Energy, Elsevier, vol. 300(C).
    3. Keunsang Lee & Haengmuk Cho, 2024. "Comparative Analysis of Performance and Emission Characteristics of Biodiesels from Animal Fats and Vegetable Oils as Fuel for Common Rail Engines," Energies, MDPI, vol. 17(7), pages 1-13, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng, Xiangdong & Liu, Shanjian & Yue, Kang & Wei, Heng & Bi, Dongmei & Zhao, Wenjing, 2023. "Insight into the promotional effect of Mn-modified nitrogenous biochar on the NH3-SCR denitrification activity at low temperatures," Energy, Elsevier, vol. 285(C).
    2. Xiaoliang Yu & Jin Yan & Rongyue Sun & Lin Mei & Yanmin Li & Shuyuan Wang & Fan Wang & Yicheng Gu, 2023. "An Experimental Study on SO 2 Emission and Ash Deposition Characteristics of High Alkali Red Mud under Large Proportional Co-Combustion Conditions in Fluidized Bed," Energies, MDPI, vol. 16(6), pages 1-17, March.
    3. Yu, Haoyang & Gao, Mingming & Zhang, Hongfu & Yue, Guangxi & Zhang, Zhen, 2023. "Data-driven optimization of pollutant emission and operational efficiency for circulating fluidized bed unit," Energy, Elsevier, vol. 281(C).
    4. Jaroslaw Krzywanski & Tomasz Czakiert & Anna Zylka & Wojciech Nowak & Marcin Sosnowski & Karolina Grabowska & Dorian Skrobek & Karol Sztekler & Anna Kulakowska & Waqar Muhammad Ashraf & Yunfei Gao, 2022. "Modelling of SO 2 and NO x Emissions from Coal and Biomass Combustion in Air-Firing, Oxyfuel, iG-CLC, and CLOU Conditions by Fuzzy Logic Approach," Energies, MDPI, vol. 15(21), pages 1-17, October.
    5. Güleç, Fatih & Okolie, Jude A. & Erdogan, Ahmet, 2023. "Techno-economic feasibility of fluid catalytic cracking unit integrated chemical looping combustion – A novel approach for CO2 capture," Energy, Elsevier, vol. 284(C).
    6. Marcin Sosnowski & Jaroslaw Krzywanski & Norbert Skoczylas, 2022. "Adsorption Desalination and Cooling Systems: Advances in Design, Modeling and Performance," Energies, MDPI, vol. 15(11), pages 1-6, May.
    7. Lei Gao & Taowu Pei & Jingran Zhang & Yu Tian, 2022. "The “Pollution Halo” Effect of FDI: Evidence from the Chinese Sichuan–Chongqing Urban Agglomeration," IJERPH, MDPI, vol. 19(19), pages 1-17, September.
    8. Jidapa Ungwanitban1 & Tabish Nawab & Syed Moin-ud-Din Shah, 2020. "An Application of Quadratic EKC model: Energy Use, Economic Development, and Environmental Quality for Thailand," iRASD Journal of Energy and Environment, International Research Association for Sustainable Development (iRASD), vol. 1(2), pages 108-118, December.
    9. Muhammad Uzair Ali & Zhimin Gong & Muhammad Ubaid Ali & Fahad Asmi & Rizwanullah Muhammad, 2022. "CO2 emission, economic development, fossil fuel consumption and population density in India, Pakistan and Bangladesh: A panel investigation," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 18-31, January.
    10. Kingsley Appiah & Jianguo Du & Michael Yeboah & Rhoda Appiah, 2019. "Causal relationship between Industrialization, Energy Intensity, Economic Growth and Carbon dioxide emissions: recent evidence from Uganda," International Journal of Energy Economics and Policy, Econjournals, vol. 9(2), pages 237-245.
    11. Usman, Muhammad & Makhdum, Muhammad Sohail Amjad, 2021. "What abates ecological footprint in BRICS-T region? Exploring the influence of renewable energy, non-renewable energy, agriculture, forest area and financial development," Renewable Energy, Elsevier, vol. 179(C), pages 12-28.
    12. Opoku, Eric Evans Osei & Boachie, Micheal Kofi, 2020. "The environmental impact of industrialization and foreign direct investment," Energy Policy, Elsevier, vol. 137(C).
    13. Oktay KIZILKAYA, 2017. "The Impact of Economic Growth and Foreign Direct Investment on CO2 Emissions: The Case of Turkey," Turkish Economic Review, KSP Journals, vol. 4(1), pages 106-118, March.
    14. Nor Aznin Abu Bakar & Jimoh Olajide Raji & Rana Muhammad Adeel-Farooq, 2019. "Greenfield, Mergers & Acquisitions, Energy Consumption, and Environmental Performance in selected SAARC and ASEAN countries," International Journal of Energy Economics and Policy, Econjournals, vol. 9(2), pages 216-224.
    15. Nhat Minh Tran, 2022. "CEO and Chairperson Characteristics and Corporate Environmental Performance: A Study of Cooperatives in Vietnam," SAGE Open, , vol. 12(4), pages 21582440221, October.
    16. Moataz Elshimy & Khadiga M. El-Aasar, 2020. "Carbon footprint, renewable energy, non-renewable energy, and livestock: testing the environmental Kuznets curve hypothesis for the Arab world," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(7), pages 6985-7012, October.
    17. Ansari, Mohd Arshad, 2022. "Re-visiting the Environmental Kuznets curve for ASEAN: A comparison between ecological footprint and carbon dioxide emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    18. Shahbaz, Muhammad & Nasreen, Samia & Abbas, Faisal & Anis, Omri, 2015. "Does foreign direct investment impede environmental quality in high-, middle-, and low-income countries?," Energy Economics, Elsevier, vol. 51(C), pages 275-287.
    19. Le Hoang Phong, 2019. "Globalization, Financial Development, and Environmental Degradation in the Presence of Environmental Kuznets Curve: Evidence from ASEAN-5 Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 9(2), pages 40-50.
    20. Ye, Li & Yang, Deling & Dang, Yaoguo & Wang, Junjie, 2022. "An enhanced multivariable dynamic time-delay discrete grey forecasting model for predicting China's carbon emissions," Energy, Elsevier, vol. 249(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8253-:d:963759. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.