IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v285y2023ics0360544223027172.html
   My bibliography  Save this article

Insight into the promotional effect of Mn-modified nitrogenous biochar on the NH3-SCR denitrification activity at low temperatures

Author

Listed:
  • Feng, Xiangdong
  • Liu, Shanjian
  • Yue, Kang
  • Wei, Heng
  • Bi, Dongmei
  • Zhao, Wenjing

Abstract

A series of Mn-doped nitrided cotton straw biochar catalysts were prepared, and the effect of Mn doping on the denitrification activity at low temperatures was investigated. The microstructure and surface chemistry of the catalyst were studied. The results showed that the low-temperature denitrification activity of the Mn-doped nitride cotton straw biochar was significantly improved, and the optimal reactivity temperature was broadened. The catalyst with 6 wt% Mn/NCAC-1.5-7 (Mn(6)/NCAC-1.5-7) removed 100 % of NO in the temperature range of 140–200 °C, and the N2 selectivity is close to 100 % throughout the reaction temperature interval of 50–260 °C. The presence of many different Brønsted and Lewis acid sites on the catalyst enhanced its NH3 adsorption capacity. The monodentate nitrite produced by Mn doping could be reduced by NH3 at low temperatures, which may be why the doping of Mn improved the low-temperature denitrification activity of the catalyst. In addition, an Eley-Rideal (E-R) mechanism existed for the reaction of adsorbed NH3 linked to Lewis acid sites with gaseous NO over Mn-modified nitrided cotton straw biochar catalysts. There was also a Langmuir-Hinshelwood (L-H) mechanism between the adsorbed NH3 and adsorbed NO states. The E-R mechanism dominated the low temperature NH3-SCR reaction.

Suggested Citation

  • Feng, Xiangdong & Liu, Shanjian & Yue, Kang & Wei, Heng & Bi, Dongmei & Zhao, Wenjing, 2023. "Insight into the promotional effect of Mn-modified nitrogenous biochar on the NH3-SCR denitrification activity at low temperatures," Energy, Elsevier, vol. 285(C).
  • Handle: RePEc:eee:energy:v:285:y:2023:i:c:s0360544223027172
    DOI: 10.1016/j.energy.2023.129323
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223027172
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129323?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qiang Zhang & Xujia Jiang & Dan Tong & Steven J. Davis & Hongyan Zhao & Guannan Geng & Tong Feng & Bo Zheng & Zifeng Lu & David G. Streets & Ruijing Ni & Michael Brauer & Aaron van Donkelaar & Randall, 2017. "Transboundary health impacts of transported global air pollution and international trade," Nature, Nature, vol. 543(7647), pages 705-709, March.
    2. Samojeden, Bogdan & Grzybek, Teresa, 2016. "The influence of the promotion of N-modified activated carbon with iron on NO removal by NH3-SCR (Selective catalytic reduction)," Energy, Elsevier, vol. 116(P3), pages 1484-1491.
    3. Chu, Huaqiang & Han, Weiwei & Cao, Wenjian & Gu, Mingyan & Xu, Guangju, 2019. "Effect of methane addition to ethylene on the morphology and size distribution of soot in a laminar co-flow diffusion flame," Energy, Elsevier, vol. 166(C), pages 392-400.
    4. Krzywanski, J. & Czakiert, T. & Nowak, W. & Shimizu, T. & Zylka, A. & Idziak, K. & Sosnowski, M. & Grabowska, K., 2022. "Gaseous emissions from advanced CLC and oxyfuel fluidized bed combustion of coal and biomass in a complex geometry facility:A comprehensive model," Energy, Elsevier, vol. 251(C).
    5. Tomasz Czakiert & Jaroslaw Krzywanski & Anna Zylka & Wojciech Nowak, 2022. "Chemical Looping Combustion: A Brief Overview," Energies, MDPI, vol. 15(4), pages 1-19, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoliang Yu & Jin Yan & Rongyue Sun & Lin Mei & Yanmin Li & Shuyuan Wang & Fan Wang & Yicheng Gu, 2023. "An Experimental Study on SO 2 Emission and Ash Deposition Characteristics of High Alkali Red Mud under Large Proportional Co-Combustion Conditions in Fluidized Bed," Energies, MDPI, vol. 16(6), pages 1-17, March.
    2. Yu, Haoyang & Gao, Mingming & Zhang, Hongfu & Yue, Guangxi & Zhang, Zhen, 2023. "Data-driven optimization of pollutant emission and operational efficiency for circulating fluidized bed unit," Energy, Elsevier, vol. 281(C).
    3. Jaroslaw Krzywanski & Tomasz Czakiert & Anna Zylka & Wojciech Nowak & Marcin Sosnowski & Karolina Grabowska & Dorian Skrobek & Karol Sztekler & Anna Kulakowska & Waqar Muhammad Ashraf & Yunfei Gao, 2022. "Modelling of SO 2 and NO x Emissions from Coal and Biomass Combustion in Air-Firing, Oxyfuel, iG-CLC, and CLOU Conditions by Fuzzy Logic Approach," Energies, MDPI, vol. 15(21), pages 1-17, October.
    4. Güleç, Fatih & Okolie, Jude A. & Erdogan, Ahmet, 2023. "Techno-economic feasibility of fluid catalytic cracking unit integrated chemical looping combustion – A novel approach for CO2 capture," Energy, Elsevier, vol. 284(C).
    5. Muhammad Usman & Muhammad Ali Ijaz Malik & Rehmat Bashir & Fahid Riaz & Muhammad Juniad Raza & Khubaib Suleman & Abd-ul Rehman & Waqar Muhammad Ashraf & Jaroslaw Krzywanski, 2022. "Enviro-Economic Assessment of HHO–CNG Mixture Utilization in Spark Ignition Engine for Performance and Environmental Sustainability," Energies, MDPI, vol. 15(21), pages 1-15, November.
    6. Lv, You & Lv, Xuguang & Fang, Fang & Yang, Tingting & Romero, Carlos E., 2020. "Adaptive selective catalytic reduction model development using typical operating data in coal-fired power plants," Energy, Elsevier, vol. 192(C).
    7. Hayat Khan & Liu Weili & Itbar Khan, 2022. "Environmental innovation, trade openness and quality institutions: an integrated investigation about environmental sustainability," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3832-3862, March.
    8. Abhijit Chakraborty & Tobias Reisch & Christian Diem & Pablo Astudillo-Estévez & Stefan Thurner, 2024. "Inequality in economic shock exposures across the global firm-level supply network," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    9. Xiaowei Song & Yongpei Hao, 2019. "Vehicular Emission Inventory and Reduction Scenario Analysis in the Yangtze River Delta, China," IJERPH, MDPI, vol. 16(23), pages 1-21, November.
    10. Hyemin Park & Wonhyuk Lim & Hyungna Oh, 2020. "Cross-Border Spillover Effect of Particulate Matter Pollution between China and Korea," Korean Economic Review, Korean Economic Association, vol. 36, pages 227-248.
    11. Yang, Xue & Su, Bin, 2019. "Impacts of international export on global and regional carbon intensity," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    12. Liu, Yang & Cheng, Xiaobei & Qin, Longjiang & Wang, Xin & Yao, Junjie & Wu, Hui, 2020. "Experimental investigation on soot formation characteristics of n-heptane/butanol isomers blends in laminar diffusion flames," Energy, Elsevier, vol. 211(C).
    13. Duque, Valentina & Gilraine, Michael, 2022. "Coal use, air pollution, and student performance," Journal of Public Economics, Elsevier, vol. 213(C).
    14. Chen, Zhijie & Zuo, Wei & Zhou, Kun & Li, Qingqing & Huang, Yuhan & E, Jiaqiang, 2023. "Multi-factor impact mechanism on the performance of high temperature proton exchange membrane fuel cell," Energy, Elsevier, vol. 278(PB).
    15. Yang, Jie & Dong, Senlin & Xie, Longgui & Cen, Qihong & Zheng, Dalong & Ma, Liping & Dai, Quxiu, 2023. "Analysis of hydrogen-rich syngas generation in chemical looping gasification of lignite: Application of carbide slag as the oxygen carrier, hydrogen carrier, and in-situ carbon capture agent," Energy, Elsevier, vol. 283(C).
    16. Wided Ragmoun, 2024. "The impact of environmental entrepreneurship and anti-corruption on environmental degradation," Journal of Global Entrepreneurship Research, Springer;UNESCO Chair in Entrepreneurship, vol. 14(1), pages 1-14, December.
    17. Rong Ma & Ke Li & Yixin Guo & Bo Zhang & Xueli Zhao & Soeren Linder & ChengHe Guan & Guoqian Chen & Yujie Gan & Jing Meng, 2021. "Mitigation potential of global ammonia emissions and related health impacts in the trade network," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    18. Du, Weijian & Li, Mengjie, 2023. "Opening the black box of environmental governance: Environmental target constraints and industrial firm pollution reduction," Energy, Elsevier, vol. 283(C).
    19. Chang, Mengzhao & Park, Suhan, 2023. "Predictions and analysis of flash boiling spray characteristics of gasoline direct injection injectors based on optimized machine learning algorithm," Energy, Elsevier, vol. 262(PA).
    20. Heba Akasha & Omid Ghaffarpasand & Francis D. Pope, 2023. "Climate Change, Air Pollution and the Associated Burden of Disease in the Arabian Peninsula and Neighbouring Regions: A Critical Review of the Literature," Sustainability, MDPI, vol. 15(4), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:285:y:2023:i:c:s0360544223027172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.