IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v325y2022ics0306261922010017.html
   My bibliography  Save this article

Optimization strategy based on robust model predictive control for RES-CCHP system under multiple uncertainties

Author

Listed:
  • Dong, Xing
  • Zhang, Chenghui
  • Sun, Bo

Abstract

The economic operation of renewable energy sources (RES) integrated with a combined cooling, heating, and power system significantly improves energy utilization and reduces environmental crises. However, multiple uncertainties in RES generation and load consumption predictions cause an imbalance between supply and demand, negatively impacting system efficiency and economics. To address this limitation, an integrated uncertainty rolling optimization framework for combining the probability distribution of prediction and uncertainty optimization is established. Under this framework, an optimization strategy based on a robust model predictive control is proposed for handling the multiple uncertainties of source load. Here, the probability distributions of RES generation and load consumption predictions are determined using the Gaussian process regression method, and a minimum–maximum rolling optimization model is developed. Under the uncertain scenarios of RES generation and load consumption, the optimization model is converted into a tractable form to obtain a robust schedule that minimizes operating costs. The over-conservatism of robust optimization can be mitigated by adjusting the uncertainty budget. Many case studies are further conducted to confirm the effectiveness of the proposed method. Results show that the operating costs decreased by 11.5% compared with the traditional model predictive control strategies in an uncertain scenario.

Suggested Citation

  • Dong, Xing & Zhang, Chenghui & Sun, Bo, 2022. "Optimization strategy based on robust model predictive control for RES-CCHP system under multiple uncertainties," Applied Energy, Elsevier, vol. 325(C).
  • Handle: RePEc:eee:appene:v:325:y:2022:i:c:s0306261922010017
    DOI: 10.1016/j.apenergy.2022.119707
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922010017
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119707?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shab Gbémou & Julien Eynard & Stéphane Thil & Emmanuel Guillot & Stéphane Grieu, 2021. "A Comparative Study of Machine Learning-Based Methods for Global Horizontal Irradiance Forecasting," Energies, MDPI, vol. 14(11), pages 1-23, May.
    2. Li, Bei & Roche, Robin, 2020. "Optimal scheduling of multiple multi-energy supply microgrids considering future prediction impacts based on model predictive control," Energy, Elsevier, vol. 197(C).
    3. Cai, Haoshu & Jia, Xiaodong & Feng, Jianshe & Li, Wenzhe & Hsu, Yuan-Ming & Lee, Jay, 2020. "Gaussian Process Regression for numerical wind speed prediction enhancement," Renewable Energy, Elsevier, vol. 146(C), pages 2112-2123.
    4. Chen, Jie & Huang, Shoujun & Shahabi, Laleh, 2021. "Economic and environmental operation of power systems including combined cooling, heating, power and energy storage resources using developed multi-objective grey wolf algorithm," Applied Energy, Elsevier, vol. 298(C).
    5. Xiao Gong & Fan Li & Bo Sun & Dong Liu, 2020. "Collaborative Optimization of Multi-Energy Complementary Combined Cooling, Heating, and Power Systems Considering Schedulable Loads," Energies, MDPI, vol. 13(4), pages 1-17, February.
    6. Ghersi, Djamal Eddine & Amoura, Meriem & Loubar, Khaled & Desideri, Umberto & Tazerout, Mohand, 2021. "Multi-objective optimization of CCHP system with hybrid chiller under new electric load following operation strategy," Energy, Elsevier, vol. 219(C).
    7. Kong, Xiangyu & Li, Chuang & Wang, Chengshan & Zhang, Yusen & Zhang, Jian, 2020. "Short-term electrical load forecasting based on error correction using dynamic mode decomposition," Applied Energy, Elsevier, vol. 261(C).
    8. Sun, Peng & Teng, Yun & Chen, Zhe, 2021. "Robust coordinated optimization for multi-energy systems based on multiple thermal inertia numerical simulation and uncertainty analysis," Applied Energy, Elsevier, vol. 296(C).
    9. Qu, Yinpeng & Xu, Jian & Sun, Yuanzhang & Liu, Dan, 2021. "A temporal distributed hybrid deep learning model for day-ahead distributed PV power forecasting," Applied Energy, Elsevier, vol. 304(C).
    10. Li, Peng & Wang, Zixuan & Wang, Jiahao & Guo, Tianyu & Yin, Yunxing, 2021. "A multi-time-space scale optimal operation strategy for a distributed integrated energy system," Applied Energy, Elsevier, vol. 289(C).
    11. Zhang, Zhendong & Ye, Lei & Qin, Hui & Liu, Yongqi & Wang, Chao & Yu, Xiang & Yin, Xingli & Li, Jie, 2019. "Wind speed prediction method using Shared Weight Long Short-Term Memory Network and Gaussian Process Regression," Applied Energy, Elsevier, vol. 247(C), pages 270-284.
    12. You, Minglei & Wang, Qian & Sun, Hongjian & Castro, Iván & Jiang, Jing, 2022. "Digital twins based day-ahead integrated energy system scheduling under load and renewable energy uncertainties," Applied Energy, Elsevier, vol. 305(C).
    13. Zhou, Yuan & Wang, Jiangjiang & Dong, Fuxiang & Qin, Yanbo & Ma, Zherui & Ma, Yanpeng & Li, Jianqiang, 2021. "Novel flexibility evaluation of hybrid combined cooling, heating and power system with an improved operation strategy," Applied Energy, Elsevier, vol. 300(C).
    14. Romero-Quete, David & Garcia, Javier Rosero, 2019. "An affine arithmetic-model predictive control approach for optimal economic dispatch of combined heat and power microgrids," Applied Energy, Elsevier, vol. 242(C), pages 1436-1447.
    15. Huang, Hongxu & Liang, Rui & Lv, Chaoxian & Lu, Mengtian & Gong, Dunwei & Yin, Shulin, 2021. "Two-stage robust stochastic scheduling for energy recovery in coal mine integrated energy system," Applied Energy, Elsevier, vol. 290(C).
    16. Yang, G. & Zhai, X.Q., 2019. "Optimal design and performance analysis of solar hybrid CCHP system considering influence of building type and climate condition," Energy, Elsevier, vol. 174(C), pages 647-663.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bai, Zhang & Yuan, Yu & Kong, Debin & Zhou, Shengdong & Li, Qi & Wang, Shuoshuo, 2023. "Potential of applying the thermochemical recuperation in combined cooling, heating and power generation: Off-design operation performance," Applied Energy, Elsevier, vol. 348(C).
    2. Lv, Zhihan & Cheng, Chen & Lv, Haibin, 2023. "Digital twins for secure thermal energy storage in building," Applied Energy, Elsevier, vol. 338(C).
    3. Li, Yuxuan & Zhang, Junli & Wu, Xiao & Shen, Jiong & Maréchal, François, 2023. "Stochastic-robust planning optimization method based on tracking-economy extreme scenario tradeoff for CCHP multi-energy system," Energy, Elsevier, vol. 283(C).
    4. Shen, Weijie & Zeng, Bo & Zeng, Ming, 2023. "Multi-timescale rolling optimization dispatch method for integrated energy system with hybrid energy storage system," Energy, Elsevier, vol. 283(C).
    5. Fan, Guozhu & Peng, Chunhua & Wang, Xuekui & Wu, Peng & Yang, Yifan & Sun, Huijuan, 2024. "Optimal scheduling of integrated energy system considering renewable energy uncertainties based on distributionally robust adaptive MPC," Renewable Energy, Elsevier, vol. 226(C).
    6. Hu, Guoqing & You, Fengqi, 2024. "AI-enabled cyber-physical-biological systems for smart energy management and sustainable food production in a plant factory," Applied Energy, Elsevier, vol. 356(C).
    7. Juan Moreno-Castro & Victor Samuel Ocaña Guevara & Lesyani Teresa León Viltre & Yandi Gallego Landera & Oscar Cuaresma Zevallos & Miguel Aybar-Mejía, 2023. "Microgrid Management Strategies for Economic Dispatch of Electricity Using Model Predictive Control Techniques: A Review," Energies, MDPI, vol. 16(16), pages 1-24, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baohong Jin & Zhichao Liu & Yichuan Liao, 2023. "Exploring the Impact of Regional Integrated Energy Systems Performance by Energy Storage Devices Based on a Bi-Level Dynamic Optimization Model," Energies, MDPI, vol. 16(6), pages 1-21, March.
    2. Ren, Xin-Yu & Li, Ling-Ling & Ji, Bing-Xiang & Liu, Jia-Qi, 2024. "Design and analysis of solar hybrid combined cooling, heating and power system: A bi-level optimization model," Energy, Elsevier, vol. 292(C).
    3. Zhou, Yuan & Wang, Jiangjiang & Yang, Mingxu & Xu, Hangwei, 2023. "Hybrid active and passive strategies for chance-constrained bilevel scheduling of community multi-energy system considering demand-side management and consumer psychology," Applied Energy, Elsevier, vol. 349(C).
    4. Zheng, Nan & Zhang, Hanfei & Duan, Liqiang & Wang, Xiaomeng & Wang, Qiushi & Liu, Luyao, 2023. "Multi-criteria performance analysis and optimization of a solar-driven CCHP system based on PEMWE, SOFC, TES, and novel PVT for hotel and office buildings," Renewable Energy, Elsevier, vol. 206(C), pages 1249-1264.
    5. Ren, Fukang & Lin, Xiaozhen & Wei, Ziqing & Zhai, Xiaoqiang & Yang, Jianrong, 2022. "A novel planning method for design and dispatch of hybrid energy systems," Applied Energy, Elsevier, vol. 321(C).
    6. Liting Zhang & Weijun Gao & Yongwen Yang & Fanyue Qian, 2020. "Impacts of Investment Cost, Energy Prices and Carbon Tax on Promoting the Combined Cooling, Heating and Power (CCHP) System of an Amusement Park Resort in Shanghai," Energies, MDPI, vol. 13(16), pages 1-22, August.
    7. Kang, Ligai & Yuan, Xiaoxue & Sun, Kangjie & Zhang, Xu & Zhao, Jun & Deng, Shuai & Liu, Wei & Wang, Yongzhen, 2022. "Feed-forward active operation optimization for CCHP system considering thermal load forecasting," Energy, Elsevier, vol. 254(PB).
    8. Zhou, Yuan & Wang, Jiangjiang & Wei, Changqi & Li, Yuxin, 2024. "A novel two-stage multi-objective dispatch model for a distributed hybrid CCHP system considering source-load fluctuations mitigation," Energy, Elsevier, vol. 300(C).
    9. Cai, Haoshu & Jia, Xiaodong & Feng, Jianshe & Yang, Qibo & Li, Wenzhe & Li, Fei & Lee, Jay, 2021. "A unified Bayesian filtering framework for multi-horizon wind speed prediction with improved accuracy," Renewable Energy, Elsevier, vol. 178(C), pages 709-719.
    10. Wang, Yubin & Dong, Wei & Yang, Qiang, 2022. "Multi-stage optimal energy management of multi-energy microgrid in deregulated electricity markets," Applied Energy, Elsevier, vol. 310(C).
    11. Ghodusinejad, Mohammad Hasan & Lavasani, Zahra & Yousefi, Hossein, 2023. "A combined decision-making framework for techno-enviro-economic assessment of a commercial CCHP system," Energy, Elsevier, vol. 276(C).
    12. Ghilardi, Lavinia Marina Paola & Castelli, Alessandro Francesco & Moretti, Luca & Morini, Mirko & Martelli, Emanuele, 2021. "Co-optimization of multi-energy system operation, district heating/cooling network and thermal comfort management for buildings," Applied Energy, Elsevier, vol. 302(C).
    13. Kang, Ligai & Wu, Xiaojing & Yuan, Xiaoxue & Ma, Kunru & Wang, Yongzhen & Zhao, Jun & An, Qingsong, 2021. "Influence analysis of energy policies on comprehensive performance of CCHP system in different buildings," Energy, Elsevier, vol. 233(C).
    14. Zheng, Ling & Zhou, Bin & Or, Siu Wing & Cao, Yijia & Wang, Huaizhi & Li, Yong & Chan, Ka Wing, 2021. "Spatio-temporal wind speed prediction of multiple wind farms using capsule network," Renewable Energy, Elsevier, vol. 175(C), pages 718-730.
    15. Lasemi, Mohammad Ali & Arabkoohsar, Ahmad & Hajizadeh, Amin & Mohammadi-ivatloo, Behnam, 2022. "A comprehensive review on optimization challenges of smart energy hubs under uncertainty factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    16. Shaoqian Pei & Hui Qin & Liqiang Yao & Yongqi Liu & Chao Wang & Jianzhong Zhou, 2020. "Multi-Step Ahead Short-Term Load Forecasting Using Hybrid Feature Selection and Improved Long Short-Term Memory Network," Energies, MDPI, vol. 13(16), pages 1-23, August.
    17. Xin Zhao & Haikun Wei & Chenxi Li & Kanjian Zhang, 2020. "A Hybrid Nonlinear Forecasting Strategy for Short-Term Wind Speed," Energies, MDPI, vol. 13(7), pages 1-15, April.
    18. Wang, Yuwei & Song, Minghao & Jia, Mengyao & Li, Bingkang & Fei, Haoran & Zhang, Yiyue & Wang, Xuejie, 2023. "Multi-objective distributionally robust optimization for hydrogen-involved total renewable energy CCHP planning under source-load uncertainties," Applied Energy, Elsevier, vol. 342(C).
    19. Fan, Wei & Tan, Zhongfu & Li, Fanqi & Zhang, Amin & Ju, Liwei & Wang, Yuwei & De, Gejirifu, 2023. "A two-stage optimal scheduling model of integrated energy system based on CVaR theory implementing integrated demand response," Energy, Elsevier, vol. 263(PC).
    20. Qinqin Xia & Yao Zou & Qianggang Wang, 2024. "Optimal Capacity Planning of Green Electricity-Based Industrial Electricity-Hydrogen Multi-Energy System Considering Variable Unit Cost Sequence," Sustainability, MDPI, vol. 16(9), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:325:y:2022:i:c:s0306261922010017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.