IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v300y2024ics0360544224013306.html
   My bibliography  Save this article

A novel two-stage multi-objective dispatch model for a distributed hybrid CCHP system considering source-load fluctuations mitigation

Author

Listed:
  • Zhou, Yuan
  • Wang, Jiangjiang
  • Wei, Changqi
  • Li, Yuxin

Abstract

Small-scale distributed energy systems with combined cooling, heating, and power (DES-CCHP) production have attracted international interest. However, fluctuating loads and renewable energies continuously disturb the real-time operation of DES-CCHP and even the connected grid, hindering the broad application of grid-connected DES-CCHP. In this paper, a novel model predictive control (MPC) based two-stage strategy is developed for DES-CCHP, with multiple timescales consideration. In the first stage, a multi-objective MPC is built with inheritance and fusion mechanisms of multi-step scheduling instructions, simultaneously minimizing operation costs and power fluctuations. The second stage performs intelligent decision-making on the results of the first stage, which allows appropriate state-switching instructions to ensure economy. Meanwhile, the decision-making rejects the unnecessary one and triggers a second-round flexibility-based interventional optimization to revise scheduling planning. The case studies show that compared to dispatch without MPC, the economic single-objective MPC, single-stage multi-objective MPC (only applies the first-stage models), and two-stage multi-objective MPC save costs by 5.31 %, 4.80 %, and 4.57 %, respectively. As for fluctuations mitigation, the single-stage and two-stage models significantly smooth power fluctuations by 51.66 % and 69.93 %, respectively. The proposed strategy operates DES-CCHP economically, stably, and grid-friendly under a rugged operating environment.

Suggested Citation

  • Zhou, Yuan & Wang, Jiangjiang & Wei, Changqi & Li, Yuxin, 2024. "A novel two-stage multi-objective dispatch model for a distributed hybrid CCHP system considering source-load fluctuations mitigation," Energy, Elsevier, vol. 300(C).
  • Handle: RePEc:eee:energy:v:300:y:2024:i:c:s0360544224013306
    DOI: 10.1016/j.energy.2024.131557
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224013306
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131557?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Yanxue & Zhang, Xiaoyi & Gao, Weijun & Xu, Wenya & Wang, Zixuan, 2022. "Operational performance and grid-support assessment of distributed flexibility practices among residential prosumers under high PV penetration," Energy, Elsevier, vol. 238(PB).
    2. Ren, Fukang & Wei, Ziqing & Zhai, Xiaoqiang, 2022. "A review on the integration and optimization of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    3. Mirza, Adeel Feroz & Mansoor, Majad & Usman, Muhammad & Ling, Qiang, 2023. "A comprehensive approach for PV wind forecasting by using a hyperparameter tuned GCVCNN-MRNN deep learning model," Energy, Elsevier, vol. 283(C).
    4. Wang, Yubin & Dong, Wei & Yang, Qiang, 2022. "Multi-stage optimal energy management of multi-energy microgrid in deregulated electricity markets," Applied Energy, Elsevier, vol. 310(C).
    5. Yan, Rujing & Wang, Jiangjiang & Huo, Shuojie & Qin, Yanbo & Zhang, Jing & Tang, Saiqiu & Wang, Yuwei & Liu, Yan & Zhou, Lin, 2023. "Flexibility improvement and stochastic multi-scenario hybrid optimization for an integrated energy system with high-proportion renewable energy," Energy, Elsevier, vol. 263(PB).
    6. Zhou, Yuan & Wang, Jiangjiang & Yang, Mingxu & Xu, Hangwei, 2023. "Hybrid active and passive strategies for chance-constrained bilevel scheduling of community multi-energy system considering demand-side management and consumer psychology," Applied Energy, Elsevier, vol. 349(C).
    7. Li, Peng & Wang, Zixuan & Yang, Weihong & Liu, Haitao & Yin, Yunxing & Wang, Jiahao & Guo, Tianyu, 2021. "Hierarchically partitioned coordinated operation of distributed integrated energy system based on a master-slave game," Energy, Elsevier, vol. 214(C).
    8. Kim, Min Jae & Kim, Tong Seop, 2019. "Integration of compressed air energy storage and gas turbine to improve the ramp rate," Applied Energy, Elsevier, vol. 247(C), pages 363-373.
    9. Li, Haoran & Zhang, Chenghui & Sun, Bo, 2022. "Deep integration planning of sustainable energies in district energy system and distributed energy station," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    10. Brunner, Christoph & Deac, Gerda & Braun, Sebastian & Zöphel, Christoph, 2020. "The future need for flexibility and the impact of fluctuating renewable power generation," Renewable Energy, Elsevier, vol. 149(C), pages 1314-1324.
    11. Zhang, Bin & Hu, Weihao & Ghias, Amer M.Y.M. & Xu, Xiao & Chen, Zhe, 2023. "Two-timescale autonomous energy management strategy based on multi-agent deep reinforcement learning approach for residential multicarrier energy system," Applied Energy, Elsevier, vol. 351(C).
    12. Zhou, Yanting & Ma, Zhongjing & Shi, Xingyu & Zou, Suli, 2024. "Multi-agent optimal scheduling for integrated energy system considering the global carbon emission constraint," Energy, Elsevier, vol. 288(C).
    13. Lv, Chaoxian & Yu, Hao & Li, Peng & Wang, Chengshan & Xu, Xiandong & Li, Shuquan & Wu, Jianzhong, 2019. "Model predictive control based robust scheduling of community integrated energy system with operational flexibility," Applied Energy, Elsevier, vol. 243(C), pages 250-265.
    14. Zhou, Yuan & Wang, Jiangjiang & Liu, Yi & Yan, Rujing & Ma, Yanpeng, 2021. "Incorporating deep learning of load predictions to enhance the optimal active energy management of combined cooling, heating and power system," Energy, Elsevier, vol. 233(C).
    15. Li, Peng & Wang, Zixuan & Wang, Jiahao & Guo, Tianyu & Yin, Yunxing, 2021. "A multi-time-space scale optimal operation strategy for a distributed integrated energy system," Applied Energy, Elsevier, vol. 289(C).
    16. Wei, Shangshang & Gao, Xianhua & Zhang, Yi & Li, Yiguo & Shen, Jiong & Li, Zuyi, 2021. "An improved stochastic model predictive control operation strategy of integrated energy system based on a single-layer multi-timescale framework," Energy, Elsevier, vol. 235(C).
    17. Abdullah, M.A. & Muttaqi, K.M. & Agalgaonkar, A.P., 2015. "Sustainable energy system design with distributed renewable resources considering economic, environmental and uncertainty aspects," Renewable Energy, Elsevier, vol. 78(C), pages 165-172.
    18. Sharf, Miel & Romm, Iliya & Palman, Michael & Zelazo, Daniel & Cukurel, Beni, 2022. "Economic dispatch of a single micro gas turbine under CHP operation with uncertain demands," Applied Energy, Elsevier, vol. 309(C).
    19. Dasi, He & Ying, Zhang & Ashab, MD Faisal Bin, 2024. "Proposing hybrid prediction approaches with the integration of machine learning models and metaheuristic algorithms to forecast the cooling and heating load of buildings," Energy, Elsevier, vol. 291(C).
    20. Li, Shenglin & Zhu, Jizhong & Dong, Hanjiang & Zhu, Haohao & Fan, Junwei, 2022. "A novel rolling optimization strategy considering grid-connected power fluctuations smoothing for renewable energy microgrids," Applied Energy, Elsevier, vol. 309(C).
    21. Zhou, Yuan & Wang, Jiangjiang & Dong, Fuxiang & Qin, Yanbo & Ma, Zherui & Ma, Yanpeng & Li, Jianqiang, 2021. "Novel flexibility evaluation of hybrid combined cooling, heating and power system with an improved operation strategy," Applied Energy, Elsevier, vol. 300(C).
    22. Ma, Deyin & Zhang, Lizhi & Sun, Bo, 2021. "An interval scheduling method for the CCHP system containing renewable energy sources based on model predictive control," Energy, Elsevier, vol. 236(C).
    23. Sasaki, Kento & Aki, Hirohisa & Ikegami, Takashi, 2022. "Application of model predictive control to grid flexibility provision by distributed energy resources in residential dwellings under uncertainty," Energy, Elsevier, vol. 239(PB).
    24. Manzano, J.M. & Salvador, J.R. & Romaine, J.B. & Alvarado-Barrios, L., 2022. "Economic predictive control for isolated microgrids based on real world demand/renewable energy data and forecast errors," Renewable Energy, Elsevier, vol. 194(C), pages 647-658.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Yuan & Wang, Jiangjiang & Yang, Mingxu & Xu, Hangwei, 2023. "Hybrid active and passive strategies for chance-constrained bilevel scheduling of community multi-energy system considering demand-side management and consumer psychology," Applied Energy, Elsevier, vol. 349(C).
    2. Liu, Jiejie & Li, Yao & Ma, Yanan & Qin, Ruomu & Meng, Xianyang & Wu, Jiangtao, 2023. "Two-layer multiple scenario optimization framework for integrated energy system based on optimal energy contribution ratio strategy," Energy, Elsevier, vol. 285(C).
    3. Wu, Long & Yin, Xunyuan & Pan, Lei & Liu, Jinfeng, 2022. "Economic model predictive control of integrated energy systems: A multi-time-scale framework," Applied Energy, Elsevier, vol. 328(C).
    4. Zhang, Yin & Qian, Tong & Tang, Wenhu, 2022. "Buildings-to-distribution-network integration considering power transformer loading capability and distribution network reconfiguration," Energy, Elsevier, vol. 244(PB).
    5. Ma, Xin & Peng, Bo & Ma, Xiangxue & Tian, Changbin & Yan, Yi, 2023. "Multi-timescale optimization scheduling of regional integrated energy system based on source-load joint forecasting," Energy, Elsevier, vol. 283(C).
    6. Wang, Yubin & Zheng, Yanchong & Yang, Qiang, 2023. "Optimal energy management of integrated energy systems for strategic participation in competitive electricity markets," Energy, Elsevier, vol. 278(PA).
    7. Dong, Xing & Zhang, Chenghui & Sun, Bo, 2022. "Optimization strategy based on robust model predictive control for RES-CCHP system under multiple uncertainties," Applied Energy, Elsevier, vol. 325(C).
    8. Liang, Hejun & Pirouzi, Sasan, 2024. "Energy management system based on economic Flexi-reliable operation for the smart distribution network including integrated energy system of hydrogen storage and renewable sources," Energy, Elsevier, vol. 293(C).
    9. Zhou, Yuan & Wang, Jiangjiang & Li, Yuxin & Wei, Changqi, 2023. "A collaborative management strategy for multi-objective optimization of sustainable distributed energy system considering cloud energy storage," Energy, Elsevier, vol. 280(C).
    10. Fang, Xiaolun & Dong, Wei & Wang, Yubin & Yang, Qiang, 2024. "Multi-stage and multi-timescale optimal energy management for hydrogen-based integrated energy systems," Energy, Elsevier, vol. 286(C).
    11. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Xue, Xizhen & Lin, Zhongwei & Fang, Fang, 2021. "Real-time optimal operation of integrated electricity and heat system considering reserve provision of large-scale heat pumps," Energy, Elsevier, vol. 237(C).
    12. Han, Fengwu & Zeng, Jianfeng & Lin, Junjie & Zhao, Yunlong & Gao, Chong, 2023. "A stochastic hierarchical optimization and revenue allocation approach for multi-regional integrated energy systems based on cooperative games," Applied Energy, Elsevier, vol. 350(C).
    13. Liu, Shan & Yan, Jie & Yan, Yamin & Zhang, Haoran & Zhang, Jing & Liu, Yongqian & Han, Shuang, 2024. "Joint operation of mobile battery, power system, and transportation system for improving the renewable energy penetration rate," Applied Energy, Elsevier, vol. 357(C).
    14. Hessam Golmohamadi, 2022. "Demand-Side Flexibility in Power Systems: A Survey of Residential, Industrial, Commercial, and Agricultural Sectors," Sustainability, MDPI, vol. 14(13), pages 1-16, June.
    15. Fan, Guozhu & Peng, Chunhua & Wang, Xuekui & Wu, Peng & Yang, Yifan & Sun, Huijuan, 2024. "Optimal scheduling of integrated energy system considering renewable energy uncertainties based on distributionally robust adaptive MPC," Renewable Energy, Elsevier, vol. 226(C).
    16. Yao, Leyi & Liu, Zeyuan & Chang, Weiguang & Yang, Qiang, 2023. "Multi-level model predictive control based multi-objective optimal energy management of integrated energy systems considering uncertainty," Renewable Energy, Elsevier, vol. 212(C), pages 523-537.
    17. Lin, Xiaojie & Lin, Xueru & Zhong, Wei & Zhou, Yi, 2024. "Multi-time scale dynamic operation optimization method for industrial park electricity-heat-gas integrated energy system considering demand elasticity," Energy, Elsevier, vol. 293(C).
    18. Fang, Xiaolun & Dong, Wei & Wang, Yubin & Yang, Qiang, 2022. "Multiple time-scale energy management strategy for a hydrogen-based multi-energy microgrid," Applied Energy, Elsevier, vol. 328(C).
    19. Wang, Yuwei & Song, Minghao & Jia, Mengyao & Li, Bingkang & Fei, Haoran & Zhang, Yiyue & Wang, Xuejie, 2023. "Multi-objective distributionally robust optimization for hydrogen-involved total renewable energy CCHP planning under source-load uncertainties," Applied Energy, Elsevier, vol. 342(C).
    20. Yang, Dechang & Wang, Ming & Yang, Ruiqi & Zheng, Yingying & Pandzic, Hrvoje, 2021. "Optimal dispatching of an energy system with integrated compressed air energy storage and demand response," Energy, Elsevier, vol. 234(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:300:y:2024:i:c:s0360544224013306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.