IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v305y2022ics0306261921012125.html
   My bibliography  Save this article

Digital twins based day-ahead integrated energy system scheduling under load and renewable energy uncertainties

Author

Listed:
  • You, Minglei
  • Wang, Qian
  • Sun, Hongjian
  • Castro, Iván
  • Jiang, Jing

Abstract

By constructing digital twins (DT) of an integrated energy system (IES), one can benefit from DT’s predictive capabilities to improve coordinations among various energy converters, hence enhancing energy efficiency, cost savings and carbon emission reduction. This paper is motivated by the fact that practical IESs suffer from multiple uncertainty sources, and complicated surrounding environment. To address this problem, a novel DT-based day-ahead scheduling method is proposed. The physical IES is modelled as a multi-vector energy system in its virtual space that interacts with the physical IES to manipulate its operations. A deep neural network is trained to make statistical cost-saving scheduling by learning from both historical forecasting errors and day-ahead forecasts. Case studies of IESs show that the proposed DT-based method is able to reduce the operating cost of IES by 63.5%, comparing to the existing forecast-based scheduling methods. It is also found that both electric vehicles and thermal energy storages play proactive roles in the proposed method, highlighting their importance in future energy system integration and decarbonisation.

Suggested Citation

  • You, Minglei & Wang, Qian & Sun, Hongjian & Castro, Iván & Jiang, Jing, 2022. "Digital twins based day-ahead integrated energy system scheduling under load and renewable energy uncertainties," Applied Energy, Elsevier, vol. 305(C).
  • Handle: RePEc:eee:appene:v:305:y:2022:i:c:s0306261921012125
    DOI: 10.1016/j.apenergy.2021.117899
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921012125
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117899?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Chuanqi & Tian, Wei & Yin, Baoquan & Li, Zhanyong & Shi, Jiaxin, 2020. "Uncertainty calibration of building energy models by combining approximate Bayesian computation and machine learning algorithms," Applied Energy, Elsevier, vol. 268(C).
    2. Salkuti, Surender Reddy, 2019. "Day-ahead thermal and renewable power generation scheduling considering uncertainty," Renewable Energy, Elsevier, vol. 131(C), pages 956-965.
    3. Xiang, Yue & Cai, Hanhu & Gu, Chenghong & Shen, Xiaodong, 2020. "Cost-benefit analysis of integrated energy system planning considering demand response," Energy, Elsevier, vol. 192(C).
    4. Zhou, Min & Wang, Bo & Watada, Junzo, 2019. "Deep learning-based rolling horizon unit commitment under hybrid uncertainties," Energy, Elsevier, vol. 186(C).
    5. Sofia Agostinelli & Fabrizio Cumo & Giambattista Guidi & Claudio Tomazzoli, 2021. "Cyber-Physical Systems Improving Building Energy Management: Digital Twin and Artificial Intelligence," Energies, MDPI, vol. 14(8), pages 1-25, April.
    6. Theocharides, Spyros & Makrides, George & Livera, Andreas & Theristis, Marios & Kaimakis, Paris & Georghiou, George E., 2020. "Day-ahead photovoltaic power production forecasting methodology based on machine learning and statistical post-processing," Applied Energy, Elsevier, vol. 268(C).
    7. Fan, Cheng & Wang, Jiayuan & Gang, Wenjie & Li, Shenghan, 2019. "Assessment of deep recurrent neural network-based strategies for short-term building energy predictions," Applied Energy, Elsevier, vol. 236(C), pages 700-710.
    8. Zhang, Liang & Wen, Jin & Li, Yanfei & Chen, Jianli & Ye, Yunyang & Fu, Yangyang & Livingood, William, 2021. "A review of machine learning in building load prediction," Applied Energy, Elsevier, vol. 285(C).
    9. Linas Gelažanskas & Kelum A. A. Gamage, 2015. "Forecasting Hot Water Consumption in Residential Houses," Energies, MDPI, vol. 8(11), pages 1-16, November.
    10. Skarvelis-Kazakos, Spyros & Papadopoulos, Panagiotis & Grau Unda, Iñaki & Gorman, Terry & Belaidi, Abdelhafid & Zigan, Stefan, 2016. "Multiple energy carrier optimisation with intelligent agents," Applied Energy, Elsevier, vol. 167(C), pages 323-335.
    11. Rachid Darbali-Zamora & Jay Johnson & Adam Summers & C. Birk Jones & Clifford Hansen & Chad Showalter, 2021. "State Estimation-Based Distributed Energy Resource Optimization for Distribution Voltage Regulation in Telemetry-Sparse Environments Using a Real-Time Digital Twin," Energies, MDPI, vol. 14(3), pages 1-21, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Majidi Nezhad, Meysam & Neshat, Mehdi & Sylaios, Georgios & Astiaso Garcia, Davide, 2024. "Marine energy digitalization digital twin's approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    2. Vladimir Simankov & Pavel Buchatskiy & Anatoliy Kazak & Semen Teploukhov & Stefan Onishchenko & Kirill Kuzmin & Petr Chetyrbok, 2024. "A Solar and Wind Energy Evaluation Methodology Using Artificial Intelligence Technologies," Energies, MDPI, vol. 17(2), pages 1-23, January.
    3. Liu, Shuwei & Tian, Jianyan & Ji, Zhengxiong & Dai, Yuanyuan & Guo, Hengkuan & Yang, Shengqiang, 2024. "Research on multi-digital twin and its application in wind power forecasting," Energy, Elsevier, vol. 292(C).
    4. Dong, Xing & Zhang, Chenghui & Sun, Bo, 2022. "Optimization strategy based on robust model predictive control for RES-CCHP system under multiple uncertainties," Applied Energy, Elsevier, vol. 325(C).
    5. Suryakiran, B.V. & Nizami, Sohrab & Verma, Ashu & Saha, Tapan Kumar & Mishra, Sukumar, 2023. "A DSO-based day-ahead market mechanism for optimal operational planning of active distribution network," Energy, Elsevier, vol. 282(C).
    6. do Amaral, J.V.S. & dos Santos, C.H. & Montevechi, J.A.B. & de Queiroz, A.R., 2023. "Energy Digital Twin applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    7. Machado, Diogo Ortiz & Chicaiza, William D. & Escaño, Juan M. & Gallego, Antonio J. & de Andrade, Gustavo A. & Normey-Rico, Julio E. & Bordons, Carlos & Camacho, Eduardo F., 2023. "Digital twin of an absorption chiller for solar cooling," Renewable Energy, Elsevier, vol. 208(C), pages 36-51.
    8. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Zhou, Bo & Guan, Qinyue & Tan, Jin & Lin, Zhongwei & Fang, Fang, 2022. "Day-ahead stochastic scheduling of integrated electricity and heat system considering reserve provision by large-scale heat pumps," Applied Energy, Elsevier, vol. 307(C).
    9. Namita Kumari & Ankush Sharma & Binh Tran & Naveen Chilamkurti & Damminda Alahakoon, 2023. "A Comprehensive Review of Digital Twin Technology for Grid-Connected Microgrid Systems: State of the Art, Potential and Challenges Faced," Energies, MDPI, vol. 16(14), pages 1-19, July.
    10. Fadhil Khadoum Alhousni & Firas Basim Ismail Alnaimi & Paul C. Okonkwo & Ikram Ben Belgacem & Hassan Mohamed & El Manaa Barhoumi, 2023. "Photovoltaic Power Prediction Using Analytical Models and Homer-Pro: Investigation of Results Reliability," Sustainability, MDPI, vol. 15(11), pages 1-13, May.
    11. Xu, Jing & Wang, Xiaoying & Gu, Yujiong & Ma, Suxia, 2023. "A data-based day-ahead scheduling optimization approach for regional integrated energy systems with varying operating conditions," Energy, Elsevier, vol. 283(C).
    12. Zhu, Jizhong & Dong, Hanjiang & Zheng, Weiye & Li, Shenglin & Huang, Yanting & Xi, Lei, 2022. "Review and prospect of data-driven techniques for load forecasting in integrated energy systems," Applied Energy, Elsevier, vol. 321(C).
    13. Qin, Yuxiao & Liu, Pei & Li, Zheng, 2022. "Multi-timescale hierarchical scheduling of an integrated energy system considering system inertia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    14. Bâra, Adela & Oprea, Simona-Vasilica, 2024. "Enabling coordination in energy communities: A Digital Twin model," Energy Policy, Elsevier, vol. 184(C).
    15. Zeli Ye & Wentao Huang & Jinfeng Huang & Jun He & Chengxi Li & Yan Feng, 2023. "Optimal Scheduling of Integrated Community Energy Systems Based on Twin Data Considering Equipment Efficiency Correction Models," Energies, MDPI, vol. 16(3), pages 1-22, January.
    16. Ning, Jiajun & Xiong, Lixin, 2024. "Analysis of the dynamic evolution process of the digital transformation of renewable energy enterprises based on the cooperative and evolutionary game model," Energy, Elsevier, vol. 288(C).
    17. Zhiyuan Zhang & Zhanshan Wang, 2023. "Multi-Objective Prediction of Integrated Energy System Using Generative Tractive Network," Mathematics, MDPI, vol. 11(20), pages 1-18, October.
    18. Sri Nikhil Gupta Gourisetti & Sraddhanjoli Bhadra & David Jonathan Sebastian-Cardenas & Md Touhiduzzaman & Osman Ahmed, 2023. "A Theoretical Open Architecture Framework and Technology Stack for Digital Twins in Energy Sector Applications," Energies, MDPI, vol. 16(13), pages 1-58, June.
    19. Zhu, Yilin & Xu, Yujie & Chen, Haisheng & Guo, Huan & Zhang, Hualiang & Zhou, Xuezhi & Shen, Haotian, 2023. "Optimal dispatch of a novel integrated energy system combined with multi-output organic Rankine cycle and hybrid energy storage," Applied Energy, Elsevier, vol. 343(C).
    20. Hua, Weiqi & Stephen, Bruce & Wallom, David C.H., 2023. "Digital twin based reinforcement learning for extracting network structures and load patterns in planning and operation of distribution systems," Applied Energy, Elsevier, vol. 342(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haizhou Fang & Hongwei Tan & Ningfang Dai & Zhaohui Liu & Risto Kosonen, 2023. "Hourly Building Energy Consumption Prediction Using a Training Sample Selection Method Based on Key Feature Search," Sustainability, MDPI, vol. 15(9), pages 1-23, May.
    2. Li, Guannan & Li, Fan & Ahmad, Tanveer & Liu, Jiangyan & Li, Tao & Fang, Xi & Wu, Yubei, 2022. "Performance evaluation of sequence-to-sequence-Attention model for short-term multi-step ahead building energy predictions," Energy, Elsevier, vol. 259(C).
    3. Fan, Cheng & Lei, Yutian & Sun, Yongjun & Piscitelli, Marco Savino & Chiosa, Roberto & Capozzoli, Alfonso, 2022. "Data-centric or algorithm-centric: Exploiting the performance of transfer learning for improving building energy predictions in data-scarce context," Energy, Elsevier, vol. 240(C).
    4. Peplinski, McKenna & Dilkina, Bistra & Chen, Mo & Silva, Sam J. & Ban-Weiss, George A. & Sanders, Kelly T., 2024. "A machine learning framework to estimate residential electricity demand based on smart meter electricity, climate, building characteristics, and socioeconomic datasets," Applied Energy, Elsevier, vol. 357(C).
    5. Ruiqiu Yao & Yukun Hu & Liz Varga, 2023. "Applications of Agent-Based Methods in Multi-Energy Systems—A Systematic Literature Review," Energies, MDPI, vol. 16(5), pages 1-36, March.
    6. Chen, Zhelun & O’Neill, Zheng & Wen, Jin & Pradhan, Ojas & Yang, Tao & Lu, Xing & Lin, Guanjing & Miyata, Shohei & Lee, Seungjae & Shen, Chou & Chiosa, Roberto & Piscitelli, Marco Savino & Capozzoli, , 2023. "A review of data-driven fault detection and diagnostics for building HVAC systems," Applied Energy, Elsevier, vol. 339(C).
    7. Luo, X.J. & Oyedele, Lukumon O. & Ajayi, Anuoluwapo O. & Akinade, Olugbenga O. & Owolabi, Hakeem A. & Ahmed, Ashraf, 2020. "Feature extraction and genetic algorithm enhanced adaptive deep neural network for energy consumption prediction in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    8. Zheng, Lingwei & Su, Ran & Sun, Xinyu & Guo, Siqi, 2023. "Historical PV-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of PV output," Energy, Elsevier, vol. 271(C).
    9. Beigvand, Soheil Derafshi & Abdi, Hamdi & La Scala, Massimo, 2017. "A general model for energy hub economic dispatch," Applied Energy, Elsevier, vol. 190(C), pages 1090-1111.
    10. Xiao, Zenan & Huang, Xiaoqiao & Liu, Jun & Li, Chengli & Tai, Yonghang, 2023. "A novel method based on time series ensemble model for hourly photovoltaic power prediction," Energy, Elsevier, vol. 276(C).
    11. Zhou, Yuekuan & Zheng, Siqian, 2020. "Multi-level uncertainty optimisation on phase change materials integrated renewable systems with hybrid ventilations and active cooling," Energy, Elsevier, vol. 202(C).
    12. Hyunsoo Kim & Jiseok Jeong & Changwan Kim, 2022. "Daily Peak-Electricity-Demand Forecasting Based on Residual Long Short-Term Network," Mathematics, MDPI, vol. 10(23), pages 1-17, November.
    13. Joanna Piotrowska-Woroniak & Tomasz Szul, 2022. "Application of a Model Based on Rough Set Theory (RST) to Estimate the Energy Efficiency of Public Buildings," Energies, MDPI, vol. 15(23), pages 1-13, November.
    14. Ling, Jihong & Zhang, Bingyang & Dai, Na & Xing, Jincheng, 2023. "Coupling input feature construction methods and machine learning algorithms for hourly secondary supply temperature prediction," Energy, Elsevier, vol. 278(C).
    15. Ajith, Meenu & Martínez-Ramón, Manel, 2021. "Deep learning based solar radiation micro forecast by fusion of infrared cloud images and radiation data," Applied Energy, Elsevier, vol. 294(C).
    16. Hou, Langbo & Tong, Xi & Chen, Heng & Fan, Lanxin & Liu, Tao & Liu, Wenyi & Liu, Tong, 2024. "Optimized scheduling of smart community energy systems considering demand response and shared energy storage," Energy, Elsevier, vol. 295(C).
    17. Suroso Isnandar & Jonathan F. Simorangkir & Kevin M. Banjar-Nahor & Hendry Timotiyas Paradongan & Nanang Hariyanto, 2024. "A Multiparadigm Approach for Generation Dispatch Optimization in a Regulated Electricity Market towards Clean Energy Transition," Energies, MDPI, vol. 17(15), pages 1-28, August.
    18. Derong Lv & Guojiang Xiong & Xiaofan Fu & Yang Wu & Sheng Xu & Hao Chen, 2022. "Optimal Power Flow with Stochastic Solar Power Using Clustering-Based Multi-Objective Differential Evolution," Energies, MDPI, vol. 15(24), pages 1-21, December.
    19. Jeeyoung Lim & Joseph J. Kim & Sunkuk Kim, 2021. "A Holistic Review of Building Energy Efficiency and Reduction Based on Big Data," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    20. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:305:y:2022:i:c:s0306261921012125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.