Vibrational energy transmission in underground continuous mining: Dynamic characteristics and experimental research of field data
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2023.122220
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Mi, Jia & Li, Qiaofeng & Liu, Mingyi & Li, Xiaofan & Zuo, Lei, 2020. "Design, modelling, and testing of a vibration energy harvester using a novel half-wave mechanical rectification," Applied Energy, Elsevier, vol. 279(C).
- Wu, Shuai & Luk, P.C.K. & Li, Chunfang & Zhao, Xiangyu & Jiao, Zongxia & Shang, Yaoxing, 2017. "An electromagnetic wearable 3-DoF resonance human body motion energy harvester using ferrofluid as a lubricant," Applied Energy, Elsevier, vol. 197(C), pages 364-374.
- Liu, Mingyi & Qian, Feng & Mi, Jia & Zuo, Lei, 2022. "Biomechanical energy harvesting for wearable and mobile devices: State-of-the-art and future directions," Applied Energy, Elsevier, vol. 321(C).
- Tri Nguyen, Hieu & Genov, Dentcho A. & Bardaweel, Hamzeh, 2020. "Vibration energy harvesting using magnetic spring based nonlinear oscillators: Design strategies and insights," Applied Energy, Elsevier, vol. 269(C).
- Zou, Hong-Xiang & Zhao, Lin-Chuan & Gao, Qiu-Hua & Zuo, Lei & Liu, Feng-Rui & Tan, Ting & Wei, Ke-Xiang & Zhang, Wen-Ming, 2019. "Mechanical modulations for enhancing energy harvesting: Principles, methods and applications," Applied Energy, Elsevier, vol. 255(C).
- Luigi Costanzo & Massimo Vitelli, 2020. "Tuning Techniques for Piezoelectric and Electromagnetic Vibration Energy Harvesters," Energies, MDPI, vol. 13(3), pages 1-34, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Zhemin & Du, Yu & Li, Tianrun & Yan, Zhimiao & Tan, Ting, 2021. "A flute-inspired broadband piezoelectric vibration energy harvesting device with mechanical intelligent design," Applied Energy, Elsevier, vol. 303(C).
- Zou, Donglin & Liu, Gaoyu & Rao, Zhushi & Tan, Ting & Zhang, Wenming & Liao, Wei-Hsin, 2021. "Design of a multi-stable piezoelectric energy harvester with programmable equilibrium point configurations," Applied Energy, Elsevier, vol. 302(C).
- Wang, Zhen & Fan, Kangqi & Zhao, Shizhong & Wu, Shuxin & Zhang, Xuan & Zhai, Kangjia & Li, Zhiqi & He, Hua, 2024. "Archery-inspired catapult mechanism with controllable energy release for efficient ultralow-frequency energy harvesting," Applied Energy, Elsevier, vol. 356(C).
- Fang, Shitong & Chen, Keyu & Lai, Zhihui & Zhou, Shengxi & Liao, Wei-Hsin, 2023. "Analysis and experiment of auxetic centrifugal softening impact energy harvesting from ultra-low-frequency rotational excitations," Applied Energy, Elsevier, vol. 331(C).
- Abdelkareem, Mohamed A.A. & Zhang, Ran & Jing, Xingjian & Wang, Xu & Ali, Mohamed Kamal Ahmed, 2022. "Characterization and implementation of a double-sided arm-toothed indirect-drive rotary electromagnetic energy-harvesting shock absorber in a full semi-trailer truck suspension platform," Energy, Elsevier, vol. 239(PA).
- Azam, Ali & Ahmed, Ammar & Kamran, Muhammad Sajid & Hai, Li & Zhang, Zutao & Ali, Asif, 2021. "Knowledge structuring for enhancing mechanical energy harvesting (MEH): An in-depth review from 2000 to 2020 using CiteSpace," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
- Khazaee, Majid & Huber, John E. & Rosendahl, Lasse & Rezania, Alireza, 2021. "The investigation of viscous and structural damping for piezoelectric energy harvesters using only time-domain voltage measurements," Applied Energy, Elsevier, vol. 285(C).
- Fang, Zheng & Tan, Xing & Liu, Genshuo & Zhou, Zijie & Pan, Yajia & Ahmed, Ammar & Zhang, Zutao, 2022. "A novel vibration energy harvesting system integrated with an inertial pendulum for zero-energy sensor applications in freight trains," Applied Energy, Elsevier, vol. 318(C).
- Gunn, B. & Alevras, P. & Flint, J.A. & Fu, H. & Rothberg, S.J. & Theodossiades, S., 2021. "A self-tuned rotational vibration energy harvester for self-powered wireless sensing in powertrains," Applied Energy, Elsevier, vol. 302(C).
- Nik Fakhri Nek Daud & Ruzlaini Ghoni, 2020. "Vibration Energy Harvesting Technique: A Comprehensive Review," Engineering Heritage Journal (GWK), Zibeline International Publishing, vol. 4(2), pages 46-48:4, October.
- Chen, Keyu & Gao, Qiang & Fang, Shitong & Zou, Donglin & Yang, Zhengbao & Liao, Wei-Hsin, 2021. "An auxetic nonlinear piezoelectric energy harvester for enhancing efficiency and bandwidth," Applied Energy, Elsevier, vol. 298(C).
- Yang, Yiqing & Chen, Peihao & Liu, Qiang, 2021. "A wave energy harvester based on coaxial mechanical motion rectifier and variable inertia flywheel," Applied Energy, Elsevier, vol. 302(C).
- Zou, Hong-Xiang & Zhu, Quan-Wei & He, Jia-Yi & Zhao, Lin-Chuan & Wei, Ke-Xiang & Zhang, Wen-Ming & Du, Rong-Hua & Liu, Sheng, 2024. "Energy harvesting floor using sustained-release regulation mechanism for self-powered traffic management," Applied Energy, Elsevier, vol. 353(PA).
- Wang, Shuyun & Yang, Zemeng & Kan, Junwu & Chen, Song & Chai, Chaohui & Zhang, Zhonghua, 2021. "Design and characterization of an amplitude-limiting rotational piezoelectric energy harvester excited by a radially dragged magnetic force," Renewable Energy, Elsevier, vol. 177(C), pages 1382-1393.
- Kwak, Wonil & Lee, Yongbok, 2021. "Optimal design and experimental verification of piezoelectric energy harvester with fractal structure," Applied Energy, Elsevier, vol. 282(PA).
- Roberto De Fazio & Roberta Proto & Carolina Del-Valle-Soto & Ramiro Velázquez & Paolo Visconti, 2022. "New Wearable Technologies and Devices to Efficiently Scavenge Energy from the Human Body: State of the Art and Future Trends," Energies, MDPI, vol. 15(18), pages 1-37, September.
- Theetuch Chinachatchawarat & Theerawat Pattarapongsakorn & Patitta Ploypray & Thitima Jintanawan & Gridsada Phanomchoeng, 2024. "Optimizing Piezoelectric Bimorphs for Energy Harvesting from Body Motion: Finger Movement in Computer Mouse Clicking," Energies, MDPI, vol. 17(16), pages 1-18, August.
- Sun, Rujie & Li, Qinyu & Yao, Jianfei & Scarpa, Fabrizio & Rossiter, Jonathan, 2020. "Tunable, multi-modal, and multi-directional vibration energy harvester based on three-dimensional architected metastructures," Applied Energy, Elsevier, vol. 264(C).
- Joshua Then & Ashish P. Agalgaonkar & Farzad Safaei & Kashem M. Muttaqi, 2024. "Design and Analysis of a Linear Electric Generator for Harvesting Vibration Energy," Energies, MDPI, vol. 17(7), pages 1-12, April.
- Bogdan Dziadak & Łukasz Makowski & Mariusz Kucharek & Adam Jóśko, 2023. "Energy Harvesting for Wearable Sensors and Body Area Network Nodes," Energies, MDPI, vol. 16(4), pages 1-30, February.
More about this item
Keywords
Vibrational energy transmission; Underground continuous mining; Field data; Dust control; Flooded-bed mesh scrubber; Computational fluid dynamics;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:354:y:2024:i:pa:s0306261923015842. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.