IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i16p4066-d1457421.html
   My bibliography  Save this article

A Comprehensive Review of Strategies toward Efficient Flexible Piezoelectric Polymer Composites Based on BaTiO 3 for Next-Generation Energy Harvesting

Author

Listed:
  • Ayda Bouhamed

    (Faculty of Sciences of Gafsa, University of Gafsa, Gafsa 2112, Tunisia
    Laboratory for Electromechanical Systems (LASEM), National Engineering School of Sfax, University of Sfax, Sfax 3018, Tunisia)

  • Sarra Missaoui

    (Laboratory for Multifunctional Materials & Applications (LaMMA), Faculty of Sciences Sfax, University of Sfax, Sfax 3038, Tunisia
    Professorship Measurement and Sensor Technology, Faculty of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09126 Chemnitz, Germany)

  • Amina Ben Ayed

    (Laboratory for Multifunctional Materials & Applications (LaMMA), Faculty of Sciences Sfax, University of Sfax, Sfax 3038, Tunisia)

  • Ahmed Attaoui

    (Professorship Measurement and Sensor Technology, Faculty of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09126 Chemnitz, Germany)

  • Dalel Missaoui

    (Laboratory for Physics of Materials (LPM), Faculty of Sciences Sfax, University of Sfax, Sfax 3038, Tunisia)

  • Khawla Jeder

    (Laboratory for Multifunctional Materials & Applications (LaMMA), Faculty of Sciences Sfax, University of Sfax, Sfax 3038, Tunisia)

  • Nesrine Guesmi

    (Laboratory for Physics of Materials (LPM), Faculty of Sciences Sfax, University of Sfax, Sfax 3038, Tunisia)

  • Anouar Njeh

    (Laboratory for Physics of Materials (LPM), Faculty of Sciences Sfax, University of Sfax, Sfax 3038, Tunisia)

  • Hamadi Khemakhem

    (Laboratory for Multifunctional Materials & Applications (LaMMA), Faculty of Sciences Sfax, University of Sfax, Sfax 3038, Tunisia)

  • Olfa Kanoun

    (Professorship Measurement and Sensor Technology, Faculty of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09126 Chemnitz, Germany)

Abstract

The increasing need for wearable and portable electronics and the necessity to provide a continuous power supply to these electronics have shifted the focus of scientists toward harvesting energy from ambient sources. Harvesting energy from ambient sources, including solar, wind, and mechanical energies, is a solution to meet rising energy demands. Furthermore, adopting lightweight power source technologies is becoming more decisive in choosing renewable energy technologies to power novel electronic devices. In this regard, piezoelectric nanogenerators (PENGs) based on polymer composites that can convert discrete and low-frequency irregular mechanical energy from their surrounding environment into electricity have attracted keen attention and made considerable progress. This review highlights the latest advancements in this technology. First, the working mechanism of piezoelectricity and the different piezoelectric materials will be detailed. In particular, the focus will be on polymer composites filled with lead-free BaTiO 3 piezoceramics to provide environmentally friendly technology. The next section will discuss the strategies adopted to enhance the performance of BaTiO 3 -based polymer composites. Finally, the potential applications of the developed PENGs will be presented, and the novel trends in the direction of the improvement of PENGs will be detailed.

Suggested Citation

  • Ayda Bouhamed & Sarra Missaoui & Amina Ben Ayed & Ahmed Attaoui & Dalel Missaoui & Khawla Jeder & Nesrine Guesmi & Anouar Njeh & Hamadi Khemakhem & Olfa Kanoun, 2024. "A Comprehensive Review of Strategies toward Efficient Flexible Piezoelectric Polymer Composites Based on BaTiO 3 for Next-Generation Energy Harvesting," Energies, MDPI, vol. 17(16), pages 1-35, August.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:4066-:d:1457421
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/16/4066/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/16/4066/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carneiro, Pedro & Soares dos Santos, Marco P. & Rodrigues, André & Ferreira, Jorge A.F. & Simões, José A.O. & Marques, A. Torres & Kholkin, Andrei L., 2020. "Electromagnetic energy harvesting using magnetic levitation architectures: A review," Applied Energy, Elsevier, vol. 260(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Mengzhou & Zhang, Yuan & Fu, Hailing & Qin, Yong & Ding, Ao & Yeatman, Eric M., 2023. "A seesaw-inspired bistable energy harvester with adjustable potential wells for self-powered internet of train monitoring," Applied Energy, Elsevier, vol. 337(C).
    2. Zhenbang Cao & Haotong Ma & Xuegang Yu & Jianliang Shi & Hu Yang & Yi Tan & Ge Ren, 2022. "Global Dynamics of a Vibro-Impact Energy Harvester," Mathematics, MDPI, vol. 10(3), pages 1-12, February.
    3. Fang, Zheng & Tan, Xing & Liu, Genshuo & Zhou, Zijie & Pan, Yajia & Ahmed, Ammar & Zhang, Zutao, 2022. "A novel vibration energy harvesting system integrated with an inertial pendulum for zero-energy sensor applications in freight trains," Applied Energy, Elsevier, vol. 318(C).
    4. Gunn, B. & Alevras, P. & Flint, J.A. & Fu, H. & Rothberg, S.J. & Theodossiades, S., 2021. "A self-tuned rotational vibration energy harvester for self-powered wireless sensing in powertrains," Applied Energy, Elsevier, vol. 302(C).
    5. Zhang, Tingsheng & Wu, Xiaoping & Pan, Yajia & Luo, Dabing & Xu, Yongsheng & Zhang, Zutao & Yuan, Yanping & Yan, Jinyue, 2022. "Vibration energy harvesting system based on track energy-recycling technology for heavy-duty freight railroads," Applied Energy, Elsevier, vol. 323(C).
    6. Wang, Wei & Zhang, Ying & Wei, Zon-Han & Cao, Junyi, 2022. "Design and numerical investigation of an ultra-wide bandwidth rolling magnet bistable electromagnetic harvester," Energy, Elsevier, vol. 261(PB).
    7. Nithesh Naik & P. Suresh & Sanjay Yadav & M. P. Nisha & José Luis Arias-Gonzáles & Juan Carlos Cotrina-Aliaga & Ritesh Bhat & Manohara D. Jalageri & Yashaarth Kaushik & Aakif Budnar Kunjibettu, 2023. "A Review on Composite Materials for Energy Harvesting in Electric Vehicles," Energies, MDPI, vol. 16(8), pages 1-19, April.
    8. Han, Minglei & Yang, Xu & Wang, Dong F. & Jiang, Lei & Song, Wei & Ono, Takahito, 2022. "A mosquito-inspired self-adaptive energy harvester for multi-directional vibrations," Applied Energy, Elsevier, vol. 315(C).
    9. Jiatong Chen & Bin Bao & Jinlong Liu & Yufei Wu & Quan Wang, 2022. "Pendulum Energy Harvesters: A Review," Energies, MDPI, vol. 15(22), pages 1-26, November.
    10. Wang, Zhen & Fan, Kangqi & Zhao, Shizhong & Wu, Shuxin & Zhang, Xuan & Zhai, Kangjia & Li, Zhiqi & He, Hua, 2024. "Archery-inspired catapult mechanism with controllable energy release for efficient ultralow-frequency energy harvesting," Applied Energy, Elsevier, vol. 356(C).
    11. Krzysztof Kecik, 2022. "Modification of Electromechanical Coupling in Electromagnetic Harvester," Energies, MDPI, vol. 15(11), pages 1-15, May.
    12. Imbaquingo, Carlos & Bahl, Christian & Insinga, Andrea R. & Bjørk, Rasmus, 2022. "A two-dimensional electromagnetic vibration energy harvester with variable stiffness," Applied Energy, Elsevier, vol. 325(C).
    13. Vidal, João V. & Rolo, Pedro & Carneiro, Pedro M.R. & Peres, Inês & Kholkin, Andrei L. & Soares dos Santos, Marco P., 2022. "Automated electromagnetic generator with self-adaptive structure by coil switching," Applied Energy, Elsevier, vol. 325(C).
    14. Vidal, João V. & Carneiro, Pedro M.R. & Soares dos Santos, Marco P., 2024. "A complete physical 3D model from first principles of vibrational-powered electromagnetic generators," Applied Energy, Elsevier, vol. 357(C).
    15. Krzysztof Kecik & Marcin Kowalczuk, 2021. "Effect of Nonlinear Electromechanical Coupling in Magnetic Levitation Energy Harvester," Energies, MDPI, vol. 14(9), pages 1-16, May.
    16. Tri Nguyen, Hieu & Genov, Dentcho A. & Bardaweel, Hamzeh, 2020. "Vibration energy harvesting using magnetic spring based nonlinear oscillators: Design strategies and insights," Applied Energy, Elsevier, vol. 269(C).
    17. Ebrahimian, Fariba & Kabirian, Zohre & Younesian, Davood & Eghbali, Pezhman, 2021. "Auxetic clamped-clamped resonators for high-efficiency vibration energy harvesting at low-frequency excitation," Applied Energy, Elsevier, vol. 295(C).
    18. Du, Xiaozhen & Chen, Haixiang & Li, Chicheng & Li, Zihao & Wang, Wenxiu & Guo, Dongxing & Yu, Hong & Wang, Junlei & Tang, Lihua, 2024. "Wake galloping piezoelectric-electromagnetic hybrid ocean wave energy harvesting with oscillating water column," Applied Energy, Elsevier, vol. 353(PA).
    19. Rezaei, Masoud & Talebitooti, Roohollah & Liao, Wei-Hsin, 2022. "Investigations on magnetic bistable PZT-based absorber for concurrent energy harvesting and vibration mitigation: Numerical and analytical approaches," Energy, Elsevier, vol. 239(PE).
    20. Wang, Jiaxin & Jiang, Ziyuan & Sun, Wenpeng & Xu, Xueping & Han, Qinkai & Chu, Fulei, 2022. "Yoyo-ball inspired triboelectric nanogenerators for harvesting biomechanical energy," Applied Energy, Elsevier, vol. 308(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:4066-:d:1457421. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.