IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v324y2022ics0306261922009989.html
   My bibliography  Save this article

Design and energy consumption research of an integrated air supply device for multi-stack fuel cell systems

Author

Listed:
  • Zhou, Su
  • Xie, Zhengchun
  • Chen, Chunguang
  • Zhang, Gang
  • Guo, Junhua

Abstract

The multi-stack fuel cell system (MFCS) could be widely used in high-power application scenarios because of its higher efficiency, stronger robustness and longer life. For a specific application scenario, an integrated air supply device is designed to meet the air demand of each fuel cell stack by maintaining the air pressure in the buffer. Under different buffer pressure control strategies (for example, constant pressure control and hybrid control), the maximum electrical power and electrical power consumption of the integrated air supply device for the MFCS are analyzed. The results show that compared with the single-stack scheme, the integrated air supply device can significantly reduce the maximum electric power and the electric power consumption. Using the 140 kW, 210 kW, and 280 kW MFCS as examples, with the increase of the power level of the fuel cell system, the benefits of the designed integrated air supply device become increasingly apparent.

Suggested Citation

  • Zhou, Su & Xie, Zhengchun & Chen, Chunguang & Zhang, Gang & Guo, Junhua, 2022. "Design and energy consumption research of an integrated air supply device for multi-stack fuel cell systems," Applied Energy, Elsevier, vol. 324(C).
  • Handle: RePEc:eee:appene:v:324:y:2022:i:c:s0306261922009989
    DOI: 10.1016/j.apenergy.2022.119704
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922009989
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119704?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Yuehua & Pei, Pucheng & Ma, Ze & Ren, Peng & Huang, Hao, 2020. "Analysis of air compression, progress of compressor and control for optimal energy efficiency in proton exchange membrane fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    2. Zaccaria, V. & Tucker, D. & Traverso, A., 2017. "Operating strategies to minimize degradation in fuel cell gas turbine hybrids," Applied Energy, Elsevier, vol. 192(C), pages 437-445.
    3. Feng, Yanbiao & Dong, Zuomin, 2020. "Integrated design and control optimization of fuel cell hybrid mining truck with minimized lifecycle cost," Applied Energy, Elsevier, vol. 270(C).
    4. Herr, Nathalie & Nicod, Jean-Marc & Varnier, Christophe & Jardin, Louise & Sorrentino, Antonella & Hissel, Daniel & Péra, Marie-Cécile, 2017. "Decision process to manage useful life of multi-stacks fuel cell systems under service constraint," Renewable Energy, Elsevier, vol. 105(C), pages 590-600.
    5. Zhou, Su & Fan, Lei & Zhang, Gang & Gao, Jianhua & Lu, Yanda & Zhao, Peng & Wen, Chaokai & Shi, Lin & Hu, Zhe, 2022. "A review on proton exchange membrane multi-stack fuel cell systems: architecture, performance, and power management," Applied Energy, Elsevier, vol. 310(C).
    6. Othman, Ahmed M. & El-Fergany, Attia A., 2021. "Optimal dynamic operation and modeling of parallel connected multi-stacks fuel cells with improved slime mould algorithm," Renewable Energy, Elsevier, vol. 175(C), pages 770-782.
    7. Sulaiman, N. & Hannan, M.A. & Mohamed, A. & Ker, P.J. & Majlan, E.H. & Wan Daud, W.R., 2018. "Optimization of energy management system for fuel-cell hybrid electric vehicles: Issues and recommendations," Applied Energy, Elsevier, vol. 228(C), pages 2061-2079.
    8. Kwan, Trevor Hocksun & Wu, Xiaofeng & Yao, Qinghe, 2018. "Multi-objective genetic optimization of the thermoelectric system for thermal management of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 217(C), pages 314-327.
    9. Petrone, Giovanni & Zamboni, Walter & Spagnuolo, Giovanni, 2019. "An interval arithmetic-based method for parametric identification of a fuel cell equivalent circuit model," Applied Energy, Elsevier, vol. 242(C), pages 1226-1236.
    10. Zhou, Su & Zhang, Gang & Fan, Lei & Gao, Jianhua & Pei, Fenglai, 2022. "Scenario-oriented stacks allocation optimization for multi-stack fuel cell systems," Applied Energy, Elsevier, vol. 308(C).
    11. Zhang, Tong & Wang, Peiqi & Chen, Huicui & Pei, Pucheng, 2018. "A review of automotive proton exchange membrane fuel cell degradation under start-stop operating condition," Applied Energy, Elsevier, vol. 223(C), pages 249-262.
    12. Duan, Hao & Zhang, Caizhi & Wang, Gucheng & Chen, Yu'an & Liu, Zhixiang & Xie, Xianshu & Shuai, Qi, 2022. "Experimental study of the dynamic and transient characteristics of sub-health fuel cell multi-stack systems without DC/DC," Energy, Elsevier, vol. 238(PC).
    13. Hou, Junbo & Yang, Min & Ke, Changchun & Zhang, Junliang, 2020. "Control logics and strategies for air supply in PEM fuel cell engines," Applied Energy, Elsevier, vol. 269(C).
    14. Chen, Huicui & Liu, Zhao & Ye, Xichen & Yi, Liu & Xu, Sichen & Zhang, Tong, 2022. "Air flow and pressure optimization for air supply in proton exchange membrane fuel cell system," Energy, Elsevier, vol. 238(PC).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Gang & Zhou, Su & Gao, Jianhua & Fan, Lei & Lu, Yanda, 2023. "Stacks multi-objective allocation optimization for multi-stack fuel cell systems," Applied Energy, Elsevier, vol. 331(C).
    2. Chen, Kui & Laghrouche, Salah & Djerdir, Abdesslem, 2019. "Degradation model of proton exchange membrane fuel cell based on a novel hybrid method," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    3. Zhou, Su & Zhang, Gang & Fan, Lei & Gao, Jianhua & Pei, Fenglai, 2022. "Scenario-oriented stacks allocation optimization for multi-stack fuel cell systems," Applied Energy, Elsevier, vol. 308(C).
    4. Zhou, Su & Fan, Lei & Zhang, Gang & Gao, Jianhua & Lu, Yanda & Zhao, Peng & Wen, Chaokai & Shi, Lin & Hu, Zhe, 2022. "A review on proton exchange membrane multi-stack fuel cell systems: architecture, performance, and power management," Applied Energy, Elsevier, vol. 310(C).
    5. Zuo, Jian & Cadet, Catherine & Li, Zhongliang & Bérenguer, Christophe & Outbib, Rachid, 2024. "A deterioration-aware energy management strategy for the lifetime improvement of a multi-stack fuel cell system subject to a random dynamic load," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    6. Ma, Shuai & Lin, Meng & Lin, Tzu-En & Lan, Tian & Liao, Xun & Maréchal, François & Van herle, Jan & Yang, Yongping & Dong, Changqing & Wang, Ligang, 2021. "Fuel cell-battery hybrid systems for mobility and off-grid applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    7. Zuo, Jian & Lv, Hong & Zhou, Daming & Xue, Qiong & Jin, Liming & Zhou, Wei & Yang, Daijun & Zhang, Cunman, 2021. "Deep learning based prognostic framework towards proton exchange membrane fuel cell for automotive application," Applied Energy, Elsevier, vol. 281(C).
    8. Wei Shen & Lei Fan & Zhirong Pan & Chunguang Chen & Ning Wang & Su Zhou, 2022. "Comparison of Different Topologies of Thermal Management Subsystems in Multi-Stack Fuel Cell Systems," Energies, MDPI, vol. 15(14), pages 1-16, July.
    9. Sanghyun Yun & Jinwon Yun & Jaeyoung Han, 2023. "Development of a 470-Horsepower Fuel Cell–Battery Hybrid Xcient Dynamic Model Using Simscape TM," Energies, MDPI, vol. 16(24), pages 1-22, December.
    10. Quan, Shengwei & Wang, Ya-Xiong & Xiao, Xuelian & He, Hongwen & Sun, Fengchun, 2021. "Feedback linearization-based MIMO model predictive control with defined pseudo-reference for hydrogen regulation of automotive fuel cells," Applied Energy, Elsevier, vol. 293(C).
    11. Chen, Dongfang & Pei, Pucheng & Meng, Yining & Ren, Peng & Li, Yuehua & Wang, Mingkai & Wang, Xizhong, 2022. "Novel extraction method of working condition spectrum for the lifetime prediction and energy management strategy evaluation of automotive fuel cells," Energy, Elsevier, vol. 255(C).
    12. Wang, Chuang & Liu, Mingkun & Wang, Bingqi & Xing, Ziwen & Shu, Yue, 2022. "Research on power consumption distribution characteristics of a water-lubricated twin-screw air compressor for fuel cell applications," Energy, Elsevier, vol. 256(C).
    13. Liu, Ze & Zhang, Baitao & Xu, Sichuan, 2022. "Research on air mass flow-pressure combined control and dynamic performance of fuel cell system for vehicles application," Applied Energy, Elsevier, vol. 309(C).
    14. Hao, Xinyang & Salhi, Issam & Laghrouche, Salah & Ait Amirat, Youcef & Djerdir, Abdesslem, 2023. "Multiple inputs multi-phase interleaved boost converter for fuel cell systems applications," Renewable Energy, Elsevier, vol. 204(C), pages 521-531.
    15. Nicu Bizon & Phatiphat Thounthong, 2021. "A Simple and Safe Strategy for Improving the Fuel Economy of a Fuel Cell Vehicle," Mathematics, MDPI, vol. 9(6), pages 1-29, March.
    16. Zeng, Tao & Xiao, Long & Chen, Jinrui & Li, Yu & Yang, Yi & Huang, Shulong & Deng, Chenghao & Zhang, Caizhi, 2023. "Feedforward-based decoupling control of air supply for vehicular fuel cell system: Methodology and experimental validation," Applied Energy, Elsevier, vol. 335(C).
    17. Shi, Ting & Peng, Xueyuan & Feng, Jianmei & Guo, Yi & Wang, Bingsheng, 2024. "Study on the startup-shutdown performance of gas foil bearings-rotor system in proton exchange membrane fuel cells," Renewable Energy, Elsevier, vol. 226(C).
    18. Hu, Haowen & Ou, Kai & Yuan, Wei-Wei, 2023. "Fused multi-model predictive control with adaptive compensation for proton exchange membrane fuel cell air supply system," Energy, Elsevier, vol. 284(C).
    19. Bizon, Nicu, 2019. "Fuel saving strategy using real-time switching of the fueling regulators in the proton exchange membrane fuel cell system," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    20. Zhang, Caizhi & Zeng, Tao & Wu, Qi & Deng, Chenghao & Chan, Siew Hwa & Liu, Zhixiang, 2021. "Improved efficiency maximization strategy for vehicular dual-stack fuel cell system considering load state of sub-stacks through predictive soft-loading," Renewable Energy, Elsevier, vol. 179(C), pages 929-944.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:324:y:2022:i:c:s0306261922009989. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.