IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v242y2019icp1226-1236.html
   My bibliography  Save this article

An interval arithmetic-based method for parametric identification of a fuel cell equivalent circuit model

Author

Listed:
  • Petrone, Giovanni
  • Zamboni, Walter
  • Spagnuolo, Giovanni

Abstract

In this paper, the identification of the equivalent circuit parameters of a polymer electrolyte fuel cell stack is performed for diagnostic and monitoring purposes. An interval arithmetic branch and bound method is developed for the identification of parameters of the Fouquet model, frequently used for fuel cell modeling in the frequency domain.

Suggested Citation

  • Petrone, Giovanni & Zamboni, Walter & Spagnuolo, Giovanni, 2019. "An interval arithmetic-based method for parametric identification of a fuel cell equivalent circuit model," Applied Energy, Elsevier, vol. 242(C), pages 1226-1236.
  • Handle: RePEc:eee:appene:v:242:y:2019:i:c:p:1226-1236
    DOI: 10.1016/j.apenergy.2019.03.136
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919305446
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.03.136?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Facci, Andrea L. & Ubertini, Stefano, 2018. "Analysis of a fuel cell combined heat and power plant under realistic smart management scenarios," Applied Energy, Elsevier, vol. 216(C), pages 60-72.
    2. Zhang, Tong & Wang, Peiqi & Chen, Huicui & Pei, Pucheng, 2018. "A review of automotive proton exchange membrane fuel cell degradation under start-stop operating condition," Applied Energy, Elsevier, vol. 223(C), pages 249-262.
    3. Jouin, Marine & Bressel, Mathieu & Morando, Simon & Gouriveau, Rafael & Hissel, Daniel & Péra, Marie-Cécile & Zerhouni, Noureddine & Jemei, Samir & Hilairet, Mickael & Ould Bouamama, Belkacem, 2016. "Estimating the end-of-life of PEM fuel cells: Guidelines and metrics," Applied Energy, Elsevier, vol. 177(C), pages 87-97.
    4. Gong, Wenyin & Yan, Xuesong & Liu, Xiaobo & Cai, Zhihua, 2015. "Parameter extraction of different fuel cell models with transferred adaptive differential evolution," Energy, Elsevier, vol. 86(C), pages 139-151.
    5. Subotić, Vanja & Stoeckl, Bernhard & Lawlor, Vincent & Strasser, Johannes & Schroettner, Hartmuth & Hochenauer, Christoph, 2018. "Towards a practical tool for online monitoring of solid oxide fuel cell operation: An experimental study and application of advanced data analysis approaches," Applied Energy, Elsevier, vol. 222(C), pages 748-761.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiao, Jieran & Chen, Fengxiang, 2022. "Humidity estimation of vehicle proton exchange membrane fuel cell under variable operating temperature based on adaptive sliding mode observation," Applied Energy, Elsevier, vol. 313(C).
    2. Petrone, Giovanni & Spagnuolo, Giovanni & Zamboni, Walter & Siano, Raffaele, 2021. "An improved mathematical method for the identification of fuel cell impedance parameters based on the interval arithmetic," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 183(C), pages 78-96.
    3. Lin Hu & Xianzhi Xu, 2023. "Current Pulse-Based Measurement Technique for Zinc–Air Battery Parameters," Energies, MDPI, vol. 16(18), pages 1-17, September.
    4. Ana Cabrera-Tobar & Alessandro Massi Pavan & Giovanni Petrone & Giovanni Spagnuolo, 2022. "A Review of the Optimization and Control Techniques in the Presence of Uncertainties for the Energy Management of Microgrids," Energies, MDPI, vol. 15(23), pages 1-38, December.
    5. Chen, Kui & Laghrouche, Salah & Djerdir, Abdesslem, 2019. "Degradation model of proton exchange membrane fuel cell based on a novel hybrid method," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    6. Divényi, Dániel & Polgári, Beáta & Sleisz, Ádám & Sőrés, Péter & Raisz, Dávid, 2021. "Investigating minimum income condition orders on European power exchanges: Controversial properties and enhancement proposals," Applied Energy, Elsevier, vol. 281(C).
    7. Guarino, Antonio & Trinchero, Riccardo & Canavero, Flavio & Spagnuolo, Giovanni, 2022. "A fast fuel cell parametric identification approach based on machine learning inverse models," Energy, Elsevier, vol. 239(PC).
    8. Zhang, Gang & Zhou, Su & Gao, Jianhua & Fan, Lei & Lu, Yanda, 2023. "Stacks multi-objective allocation optimization for multi-stack fuel cell systems," Applied Energy, Elsevier, vol. 331(C).
    9. Zhou, Su & Xie, Zhengchun & Chen, Chunguang & Zhang, Gang & Guo, Junhua, 2022. "Design and energy consumption research of an integrated air supply device for multi-stack fuel cell systems," Applied Energy, Elsevier, vol. 324(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Walter Zamboni & Giovanni Petrone & Giovanni Spagnuolo & Davide Beretta, 2019. "An Evolutionary Computation Approach for the Online/On-Board Identification of PEM Fuel Cell Impedance Parameters with A Diagnostic Perspective," Energies, MDPI, vol. 12(22), pages 1-19, November.
    2. Antonio Guarino & Giovanni Petrone & Walter Zamboni, 2019. "Improving the Performance of a Dual Kalman Filter for the Identification of PEM Fuel Cells in Impedance Spectroscopy Experiments," Energies, MDPI, vol. 12(17), pages 1-18, September.
    3. Ke Song & Yimin Wang & Xiao Hu & Jing Cao, 2020. "Online Prediction of Vehicular Fuel Cell Residual Lifetime Based on Adaptive Extended Kalman Filter," Energies, MDPI, vol. 13(23), pages 1-21, November.
    4. Polverino, Pierpaolo & Bove, Giovanni & Sorrentino, Marco & Pianese, Cesare & Beretta, Davide, 2019. "Advancements on scaling-up simulation of Proton Exchange Membrane Fuel Cells impedance through Buckingham Pi theorem," Applied Energy, Elsevier, vol. 249(C), pages 245-252.
    5. Lorenzo, Charles & Bouquain, David & Hibon, Samuel & Hissel, Daniel, 2021. "Synthesis of degradation mechanisms and of their impacts on degradation rates on proton-exchange membrane fuel cells and lithium-ion nickel–manganese–cobalt batteries in hybrid transport applicati," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    6. Pei, Pucheng & Chen, Dongfang & Wu, Ziyao & Ren, Peng, 2019. "Nonlinear methods for evaluating and online predicting the lifetime of fuel cells," Applied Energy, Elsevier, vol. 254(C).
    7. Zhang, Ruiyuan & Min, Ting & Chen, Li & Kang, Qinjun & He, Ya-Ling & Tao, Wen-Quan, 2019. "Pore-scale and multiscale study of effects of Pt degradation on reactive transport processes in proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    8. Chen, Kui & Laghrouche, Salah & Djerdir, Abdesslem, 2019. "Degradation model of proton exchange membrane fuel cell based on a novel hybrid method," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    9. Petrone, Giovanni & Spagnuolo, Giovanni & Zamboni, Walter & Siano, Raffaele, 2021. "An improved mathematical method for the identification of fuel cell impedance parameters based on the interval arithmetic," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 183(C), pages 78-96.
    10. Zhang, Xiaojie & Zhang, Tong & Chen, Huicui & Cao, Yinliang, 2021. "A review of online electrochemical diagnostic methods of on-board proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 286(C).
    11. Gabriele Loreti & Andrea Luigi Facci & Stefano Ubertini, 2021. "High-Efficiency Combined Heat and Power through a High-Temperature Polymer Electrolyte Membrane Fuel Cell and Gas Turbine Hybrid System," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    12. Li, Yuehua & Pei, Pucheng & Ma, Ze & Ren, Peng & Wu, Ziyao & Chen, Dongfang & Huang, Hao, 2019. "Characteristic analysis in lowering current density based on pressure drop for avoiding flooding in proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 248(C), pages 321-329.
    13. Ahmed Mohmed Dafalla & Lin Wei & Bereket Tsegai Habte & Jian Guo & Fangming Jiang, 2022. "Membrane Electrode Assembly Degradation Modeling of Proton Exchange Membrane Fuel Cells: A Review," Energies, MDPI, vol. 15(23), pages 1-26, December.
    14. Xu, Liangfei & Fang, Chuan & Li, Jianqiu & Ouyang, Minggao & Lehnert, Werner, 2018. "Nonlinear dynamic mechanism modeling of a polymer electrolyte membrane fuel cell with dead-ended anode considering mass transport and actuator properties," Applied Energy, Elsevier, vol. 230(C), pages 106-121.
    15. Lu Zhang & Yongfeng Liu & Pucheng Pei & Xintong Liu & Long Wang & Yuan Wan, 2022. "Variation Characteristic Analysis of Water Content at the Flow Channel of Proton Exchange Membrane Fuel Cell," Energies, MDPI, vol. 15(9), pages 1-20, April.
    16. Nicu Bizon & Mircea Raceanu & Emmanouel Koudoumas & Adriana Marinoiu & Emmanuel Karapidakis & Elena Carcadea, 2020. "Renewable/Fuel Cell Hybrid Power System Operation Using Two Search Controllers of the Optimal Power Needed on the DC Bus," Energies, MDPI, vol. 13(22), pages 1-26, November.
    17. Víctor Sanz i López & Ramon Costa-Castelló & Carles Batlle, 2022. "Literature Review of Energy Management in Combined Heat and Power Systems Based on High-Temperature Proton Exchange Membrane Fuel Cells for Residential Comfort Applications," Energies, MDPI, vol. 15(17), pages 1-22, September.
    18. Hou, Junbo & Yang, Min & Ke, Changchun & Zhang, Junliang, 2020. "Control logics and strategies for air supply in PEM fuel cell engines," Applied Energy, Elsevier, vol. 269(C).
    19. Wang, Chu & Li, Zhongliang & Outbib, Rachid & Dou, Manfeng & Zhao, Dongdong, 2022. "Symbolic deep learning based prognostics for dynamic operating proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 305(C).
    20. Komini Babu, S. & Spernjak, D. & Dillet, J. & Lamibrac, A. & Maranzana, G. & Didierjean, S. & Lottin, O. & Borup, R.L. & Mukundan, R., 2019. "Spatially resolved degradation during startup and shutdown in polymer electrolyte membrane fuel cell operation," Applied Energy, Elsevier, vol. 254(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:242:y:2019:i:c:p:1226-1236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.