IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p5030-d859448.html
   My bibliography  Save this article

Comparison of Different Topologies of Thermal Management Subsystems in Multi-Stack Fuel Cell Systems

Author

Listed:
  • Wei Shen

    (School of Automotive Studies, Tongji University, Shanghai 201804, China)

  • Lei Fan

    (School of Automotive Studies, Tongji University, Shanghai 201804, China)

  • Zhirong Pan

    (Chinesisch-Deutsches Hochschulkolleg, Tongji University, Shanghai 201804, China)

  • Chunguang Chen

    (School of Automotive Studies, Tongji University, Shanghai 201804, China)

  • Ning Wang

    (School of Automotive Studies, Tongji University, Shanghai 201804, China)

  • Su Zhou

    (School of Automotive Studies, Tongji University, Shanghai 201804, China
    Chinesisch-Deutsches Hochschulkolleg, Tongji University, Shanghai 201804, China)

Abstract

The performance of a fuel cell stack is affected by the operating temperature of the stack. The thermal management subsystem of a multi-stack fuel cell system (MFCS) is particularly significant for the operating temperature control of each stack in the MFCS. To study the influence of different topologies of a MFCS thermal management subsystem, this paper proposes and establishes two different topologies. Firstly, the integrated topology is proposed. Secondly, seven component models, namely the mixer, thermostat, radiator, tank, pump, bypass value, and proton exchange membrane fuel cell stack temperature models, are described in detail. Finally, the performance of the two topologies of the MFCS thermal management subsystem under two working conditions, steady (200 A) and variable (China heavy-duty commercial test cycle, C-WTVC), is compared. Furthermore, there are two evaluating indicators, including the stability duration and deviation of the operating temperatures of the single stack in the MFCS. Results show that when the MFCS operates under steady working conditions, the integrated topology is superior in operating temperature control accuracy ( Δ T < 0.5 K ), while the distributed topology is superior in the adjustment process ( t ≤ 100 s ). Moreover, when the MFCS operates under variable working conditions, the distributed topology is superior in operating temperature control accuracy.

Suggested Citation

  • Wei Shen & Lei Fan & Zhirong Pan & Chunguang Chen & Ning Wang & Su Zhou, 2022. "Comparison of Different Topologies of Thermal Management Subsystems in Multi-Stack Fuel Cell Systems," Energies, MDPI, vol. 15(14), pages 1-16, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5030-:d:859448
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/5030/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/5030/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Yuehua & Pei, Pucheng & Ma, Ze & Ren, Peng & Huang, Hao, 2020. "Analysis of air compression, progress of compressor and control for optimal energy efficiency in proton exchange membrane fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    2. Zhou, Su & Zhang, Gang & Fan, Lei & Gao, Jianhua & Pei, Fenglai, 2022. "Scenario-oriented stacks allocation optimization for multi-stack fuel cell systems," Applied Energy, Elsevier, vol. 308(C).
    3. Liu, Yongfeng & Fan, Lei & Pei, Pucheng & Yao, Shengzhuo & Wang, Fang, 2018. "Asymptotic analysis for the inlet relative humidity effects on the performance of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 213(C), pages 573-584.
    4. Zhou, Su & Fan, Lei & Zhang, Gang & Gao, Jianhua & Lu, Yanda & Zhao, Peng & Wen, Chaokai & Shi, Lin & Hu, Zhe, 2022. "A review on proton exchange membrane multi-stack fuel cell systems: architecture, performance, and power management," Applied Energy, Elsevier, vol. 310(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei Jin & Shaohua Wang & Jiachao Guo & Haopeng Li & Xiaoliang Tian, 2023. "Performance Study of Gravity-Type Heat Pipe Applied to Fuel Cell Heat Dissipation," Energies, MDPI, vol. 16(1), pages 1-11, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Su & Fan, Lei & Zhang, Gang & Gao, Jianhua & Lu, Yanda & Zhao, Peng & Wen, Chaokai & Shi, Lin & Hu, Zhe, 2022. "A review on proton exchange membrane multi-stack fuel cell systems: architecture, performance, and power management," Applied Energy, Elsevier, vol. 310(C).
    2. Zhang, Gang & Zhou, Su & Gao, Jianhua & Fan, Lei & Lu, Yanda, 2023. "Stacks multi-objective allocation optimization for multi-stack fuel cell systems," Applied Energy, Elsevier, vol. 331(C).
    3. Zhou, Su & Xie, Zhengchun & Chen, Chunguang & Zhang, Gang & Guo, Junhua, 2022. "Design and energy consumption research of an integrated air supply device for multi-stack fuel cell systems," Applied Energy, Elsevier, vol. 324(C).
    4. Zuo, Jian & Cadet, Catherine & Li, Zhongliang & Bérenguer, Christophe & Outbib, Rachid, 2024. "A deterioration-aware energy management strategy for the lifetime improvement of a multi-stack fuel cell system subject to a random dynamic load," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    5. Hao, Xinyang & Salhi, Issam & Laghrouche, Salah & Ait Amirat, Youcef & Djerdir, Abdesslem, 2023. "Multiple inputs multi-phase interleaved boost converter for fuel cell systems applications," Renewable Energy, Elsevier, vol. 204(C), pages 521-531.
    6. Lei Fan & Jianhua Gao & Yanda Lu & Wei Shen & Su Zhou, 2023. "Empirical Degradation Models of the Different Indexes of the Proton Exchange Membrane Fuel Cell Based on the Component Degradation," Energies, MDPI, vol. 16(24), pages 1-19, December.
    7. Wang, Chuang & Liu, Mingkun & Li, Zengqun & Xing, Ziwen & Shu, Yue, 2023. "Performance improvement of twin-screw air expander used in PEMFC systems by two-phase expansion," Energy, Elsevier, vol. 273(C).
    8. Igourzal, Ayoub & Auger, François & Olivier, Jean-Christophe & Retière, Clément, 2024. "Electrical, thermal and degradation modelling of PEMFCs for naval applications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 224(PA), pages 34-49.
    9. Sanghyun Yun & Jinwon Yun & Jaeyoung Han, 2023. "Development of a 470-Horsepower Fuel Cell–Battery Hybrid Xcient Dynamic Model Using Simscape TM," Energies, MDPI, vol. 16(24), pages 1-22, December.
    10. Lu Zhang & Yongfeng Liu & Pucheng Pei & Xintong Liu & Long Wang & Yuan Wan, 2022. "Variation Characteristic Analysis of Water Content at the Flow Channel of Proton Exchange Membrane Fuel Cell," Energies, MDPI, vol. 15(9), pages 1-20, April.
    11. Lei Fan & Jianhua Gao & Yanda Lu & Wei Shen & Su Zhou, 2023. "Analysis of the Influence of Component Degradation on Different Degradation Indexes of PEMFC," Energies, MDPI, vol. 16(23), pages 1-14, November.
    12. Lin, Chen & Yan, Xiaohui & Wei, Guanghua & Ke, Changchun & Shen, Shuiyun & Zhang, Junliang, 2019. "Optimization of configurations and cathode operating parameters on liquid-cooled proton exchange membrane fuel cell stacks by orthogonal method," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    13. Wang, Chuang & Liu, Mingkun & Wang, Bingqi & Xing, Ziwen & Shu, Yue, 2022. "Research on power consumption distribution characteristics of a water-lubricated twin-screw air compressor for fuel cell applications," Energy, Elsevier, vol. 256(C).
    14. Wei Li & Jisheng Liu & Pengcheng Fang & Jinxin Cheng, 2021. "A Novel Surface Parameterization Method for Optimizing Radial Impeller Design in Fuel Cell System," Energies, MDPI, vol. 14(9), pages 1-25, May.
    15. Cheng, Ming & Luo, Liuxuan & Feng, Yong & Feng, Qilong & Yan, Xiaohui & Shen, Shuiyun & Guo, Yangge & Zhang, Junliang, 2024. "Numerical studies on porous water transport plates applied in PEMFCs under pure oxygen condition," Applied Energy, Elsevier, vol. 362(C).
    16. Wang, Jun & Han, Yi & Pan, Shiyang & Wang, Zengli & Cui, Dong & Geng, Maofei, 2022. "Design and development of an oil-free double-scroll air compressor used in a PEM fuel cell system," Renewable Energy, Elsevier, vol. 199(C), pages 840-851.
    17. Zuo, Jian & Steiner, Nadia Yousfi & Li, Zhongliang & Hissel, Daniel, 2024. "Health management review for fuel cells: Focus on action phase," Renewable and Sustainable Energy Reviews, Elsevier, vol. 201(C).
    18. Olabi, A.G. & Abdelkareem, Mohammad Ali, 2022. "Renewable energy and climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    19. Pei, Houchang & Xiao, Chenguang & Tu, Zhengkai, 2022. "Experimental study on liquid water formation characteristics in a novel transparent proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 321(C).
    20. Teresa Donateo & Andrea Graziano Bonatesta & Antonio Ficarella & Leonardo Lecce, 2024. "Energy Consumption and Saved Emissions of a Hydrogen Power System for Ultralight Aviation: A Case Study," Energies, MDPI, vol. 17(13), pages 1-24, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5030-:d:859448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.