IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v112y2022ics0140988322003048.html
   My bibliography  Save this article

Economic analysis of the hard-to-abate sectors in India

Author

Listed:
  • Paltsev, Sergey
  • Gurgel, Angelo
  • Morris, Jennifer
  • Chen, Henry
  • Dey, Subhrajit
  • Marwah, Sumita

Abstract

We assess the contribution of India's hard-to-abate sectors to the country's current emissions and their likely future trajectory of development under different policy regimes. We employ an enhanced version of the MIT Economic Projection and Policy Analysis (EPPA) model to explicitly represent the following hard-to-abate sectors: iron and steel, non-ferrous metals (copper, aluminum, zinc, etc.), non-metallic minerals (cement, plaster, lime, etc.), and chemicals. We find that, without additional policies, the Paris Agreement pledges made by India for the year 2030 still can lead to an increasing use of fossil fuels and corresponding greenhouse gas (GHG) emissions, with projected CO2 emissions from hard-to-abate sectors growing by about 2.6 times from 2020 to 2050. Scenarios with electrification, natural gas support, or increased resource efficiency lead to a decrease in emissions from these sectors by 15–20% in 2050, but without carbon pricing (or disruptive technology changes) emissions are not reduced relative to their current levels due to growth in output. Carbon pricing that makes carbon capture and storage (CCS) economically competitive is critical for achieving substantial emission reductions in hard-to-abate sectors, enabling emission reductions of 80% by 2050 relative the scenario without additional policies. Without a substantial government support, decarbonization of India's hard-to-abate sectors will not be achievable.

Suggested Citation

  • Paltsev, Sergey & Gurgel, Angelo & Morris, Jennifer & Chen, Henry & Dey, Subhrajit & Marwah, Sumita, 2022. "Economic analysis of the hard-to-abate sectors in India," Energy Economics, Elsevier, vol. 112(C).
  • Handle: RePEc:eee:eneeco:v:112:y:2022:i:c:s0140988322003048
    DOI: 10.1016/j.eneco.2022.106149
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988322003048
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2022.106149?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kapsalyamova, Zhanna & Paltsev, Sergey, 2020. "Use of natural gas and oil as a source of feedstocks," Energy Economics, Elsevier, vol. 92(C).
    2. Rissman, Jeffrey & Bataille, Chris & Masanet, Eric & Aden, Nate & Morrow, William R. & Zhou, Nan & Elliott, Neal & Dell, Rebecca & Heeren, Niko & Huckestein, Brigitta & Cresko, Joe & Miller, Sabbie A., 2020. "Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070," Applied Energy, Elsevier, vol. 266(C).
    3. Paltsev, Sergey & Morris, Jennifer & Kheshgi, Haroon & Herzog, Howard, 2021. "Hard-to-Abate Sectors: The role of industrial carbon capture and storage (CCS) in emission mitigation," Applied Energy, Elsevier, vol. 300(C).
    4. Angel Aguiar & Maksym Chepeliev & Erwin L. Corong & Robert McDougall & Dominique van der Mensbrugghe, 2019. "The GTAP Data Base: Version 10," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 4(1), pages 1-27, June.
    5. Chen, Y.-H. Henry & Paltsev, Sergey & Reilly, John M. & Morris, Jennifer F. & Babiker, Mustafa H., 2016. "Long-term economic modeling for climate change assessment," Economic Modelling, Elsevier, vol. 52(PB), pages 867-883.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Das, Khanindra Ch. & Mahalik, Mantu Kumar, 2023. "Renewable energy use and export performance of manufacturing firms: Panel evidence from six industries in India," Energy Economics, Elsevier, vol. 125(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Y.-H. Henry Chen & Erik Ens & Olivier Gervais & Hossein Hosseini & Craig Johnston & Serdar Kabaca & Miguel Molico & Sergey Paltsev & Alex Proulx & Argyn Toktamyssov, 2022. "Transition Scenarios for Analyzing Climate-Related Financial Risk," Discussion Papers 2022-1, Bank of Canada.
    2. Paltsev, Sergey & Morris, Jennifer & Kheshgi, Haroon & Herzog, Howard, 2021. "Hard-to-Abate Sectors: The role of industrial carbon capture and storage (CCS) in emission mitigation," Applied Energy, Elsevier, vol. 300(C).
    3. Lynn Riggs & Livvy Mitchell, 2021. "Predicted Distributional Impacts of Climate Change Policy on Employment," Working Papers 21_07, Motu Economic and Public Policy Research.
    4. Taran Faehn & Gabriel Bachner & Robert Beach & Jean Chateau & Shinichiro Fujimori & Madanmohan Ghosh & Meriem Hamdi-Cherif & Elisa Lanzi & Sergey Paltsev & Toon Vandyck & Bruno Cunha & Rafael Garaffa , 2020. "Capturing Key Energy and Emission Trends in CGE models: Assessment of Status and Remaining Challenges," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 5(1), pages 196-272, June.
    5. Nhuchhen, Daya R. & Sit, Song P. & Layzell, David B., 2022. "Decarbonization of cement production in a hydrogen economy," Applied Energy, Elsevier, vol. 317(C).
    6. Winchester, Niven & White, Dominic, 2022. "The Climate PoLicy ANalysis (C-PLAN) Model, Version 1.0," Energy Economics, Elsevier, vol. 108(C).
    7. Gurgel, Angelo & Mignone, Bryan K. & Morris, Jennifer & Kheshgi, Haroon & Mowers, Matthew & Steinberg, Daniel & Herzog, Howard & Paltsev, Sergey, 2023. "Variable renewable energy deployment in low-emission scenarios: The role of technology cost and value," Applied Energy, Elsevier, vol. 344(C).
    8. Jennifer Morris & David Hone & Martin Haigh & Andrei Sokolov & Sergey Paltsev, 2023. "Future energy: in search of a scenario reflecting current and future pressures and trends," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 25(1), pages 31-61, January.
    9. Missbach, Leonard & Steckel, Jan Christoph & Vogt-Schilb, Adrien, 2024. "Cash transfers in the context of carbon pricing reforms in Latin America and the Caribbean," World Development, Elsevier, vol. 173(C).
    10. Fábio T. F. Silva & Alexandre Szklo & Amanda Vinhoza & Ana Célia Nogueira & André F. P. Lucena & Antônio Marcos Mendonça & Camilla Marcolino & Felipe Nunes & Francielle M. Carvalho & Isabela Tagomori , 2022. "Inter-sectoral prioritization of climate technologies: insights from a Technology Needs Assessment for mitigation in Brazil," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(7), pages 1-39, October.
    11. Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    12. Winchester, Niven & Reilly, John M., 2020. "The economic and emissions benefits of engineered wood products in a low-carbon future," Energy Economics, Elsevier, vol. 85(C).
    13. Mayyas Alsalman & Vian Ahmed & Zied Bahroun & Sara Saboor, 2023. "An Economic Analysis of Solar Energy Generation Policies in the UAE," Energies, MDPI, vol. 16(7), pages 1-25, March.
    14. Hafner, Marco & Yerushalmi, Erez & Andersson, Fredrik L. & Burtea, Teodor, 2020. "Quantifying the macroeconomic cost of night-time bathroom visits: an application to the UK," CAFE Working Papers 5, Centre for Accountancy, Finance and Economics (CAFE), Birmingham City Business School, Birmingham City University.
    15. Philippidis, George & M'Barek, Robert & Urban-Boysen, Kirsten & Van Zeist, Willem-Jan, 2023. "Exploring economy-wide sustainable conditions for EU bio-chemical activities," Ecological Economics, Elsevier, vol. 210(C).
    16. Sonali Chowdhry & Julian Hinz & Katrin Kamin, 2022. "Brothers in arms: The value of coalitions in sanctions regimes," RSCAS Working Papers 2022/62, European University Institute.
    17. Ken Itakura & Hiro Lee, 2023. "Should the United States rejoin the Trans-Pacific trade deal?," International Economics and Economic Policy, Springer, vol. 20(2), pages 235-255, May.
    18. Inkyo Cheong & Valijon Turakulov, 2022. "How Central Asia to Escape from trade isolation?: Policy targeted scenarios by CGE modelling," The World Economy, Wiley Blackwell, vol. 45(8), pages 2622-2648, August.
    19. Glyn Wittwer & Mark Horridge, 2018. "SinoTERM365, Bottom-up Representation of China at the Prefectural Level," Centre of Policy Studies/IMPACT Centre Working Papers g-285, Victoria University, Centre of Policy Studies/IMPACT Centre.
    20. Róbert Csalódi & Tímea Czvetkó & Viktor Sebestyén & János Abonyi, 2022. "Sectoral Analysis of Energy Transition Paths and Greenhouse Gas Emissions," Energies, MDPI, vol. 15(21), pages 1-26, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:112:y:2022:i:c:s0140988322003048. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.