IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v317y2022ics030626192200513x.html
   My bibliography  Save this article

A modeling framework for predicting the effect of the operating conditions and component sizing on fuel cell degradation and performance for automotive applications

Author

Listed:
  • Desantes, J.M.
  • Novella, R.
  • Pla, B.
  • Lopez-Juarez, M.

Abstract

In this study, durability and performance prediction were integrated in the sizing process of the FC stack of a fuel cell range-extender (FCREx) vehicle together with the design of a dynamics-limited control strategy. For that purpose, a FCREx vehicle model integrating a FC stack, balance of plant, battery, H2 tank and vehicle body (C-class SUV) validated in previous studies was used. To predict FC stack degradation rate, a novel semi-empirical multi-layered degradation modeling framework for automotive application is proposed and developed. Degradation rates are calculated based on reference degradation rates measured at reference and known conditions (1st layer) and scaled with the electrochemical phenomena (2nd layer) and the operating conditions (3rd layer) through scaling functions based on physical tendencies. Results show how increasing the FC stack power decreases H2 consumption but increases durability, while increasing the dynamic limitations on the control strategy increases both H2 consumption and durability. The isolated effect of sizing implied a decrease in H2 consumption of ∼3% and an increase in FC stack durability of ∼53% when comparing the 40 kW and 100 kW designs. In contrast, the effect of dynamic limitations was significantly perceived in the 40 kW design which implied an increase in H2 consumption close to 8% and an increase in durability of 294% when comparing the infinite dynamics and the highest dynamically restricted cases. Nevertheless, the effect of sizing is neglected under high dynamic limitation and limiting the current density change rate to 0.001 A/cm2s may prevent the control strategy from fulfilling the charge sustaining mode in aggressive driving. Based on these results, a set of recommendations were elaborated for FC stack and FCV manufacturers aiming to apply FCREx architecture to passenger car vehicles.

Suggested Citation

  • Desantes, J.M. & Novella, R. & Pla, B. & Lopez-Juarez, M., 2022. "A modeling framework for predicting the effect of the operating conditions and component sizing on fuel cell degradation and performance for automotive applications," Applied Energy, Elsevier, vol. 317(C).
  • Handle: RePEc:eee:appene:v:317:y:2022:i:c:s030626192200513x
    DOI: 10.1016/j.apenergy.2022.119137
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192200513X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119137?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ma, Rui & Yang, Tao & Breaz, Elena & Li, Zhongliang & Briois, Pascal & Gao, Fei, 2018. "Data-driven proton exchange membrane fuel cell degradation predication through deep learning method," Applied Energy, Elsevier, vol. 231(C), pages 102-115.
    2. Song, Ke & Wang, Xiaodi & Li, Feiqiang & Sorrentino, Marco & Zheng, Bailin, 2020. "Pontryagin’s minimum principle-based real-time energy management strategy for fuel cell hybrid electric vehicle considering both fuel economy and power source durability," Energy, Elsevier, vol. 205(C).
    3. Kregar, Ambrož & Tavčar, Gregor & Kravos, Andraž & Katrašnik, Tomaž, 2020. "Predictive system-level modeling framework for transient operation and cathode platinum degradation of high temperature proton exchange membrane fuel cells☆," Applied Energy, Elsevier, vol. 263(C).
    4. Peng, Fei & Zhao, Yuanzhe & Chen, Ting & Zhang, Xuexia & Chen, Weirong & Zhou, Donghua & Li, Qi, 2018. "Development of robust suboptimal real-time power sharing strategy for modern fuel cell based hybrid tramways considering operational uncertainties and performance degradation," Applied Energy, Elsevier, vol. 226(C), pages 503-521.
    5. He, Yingdong & Zhou, Yuekuan & Wang, Zhe & Liu, Jia & Liu, Zhengxuan & Zhang, Guoqiang, 2021. "Quantification on fuel cell degradation and techno-economic analysis of a hydrogen-based grid-interactive residential energy sharing network with fuel-cell-powered vehicles," Applied Energy, Elsevier, vol. 303(C).
    6. Liu, Jia & Yang, Hongxing & Zhou, Yuekuan, 2021. "Peer-to-peer trading optimizations on net-zero energy communities with energy storage of hydrogen and battery vehicles," Applied Energy, Elsevier, vol. 302(C).
    7. Molina, S. & Novella, R. & Pla, B. & Lopez-Juarez, M., 2021. "Optimization and sizing of a fuel cell range extender vehicle for passenger car applications in driving cycle conditions," Applied Energy, Elsevier, vol. 285(C).
    8. Feng, Yanbiao & Dong, Zuomin, 2020. "Integrated design and control optimization of fuel cell hybrid mining truck with minimized lifecycle cost," Applied Energy, Elsevier, vol. 270(C).
    9. Feroldi, Diego & Carignano, Mauro, 2016. "Sizing for fuel cell/supercapacitor hybrid vehicles based on stochastic driving cycles," Applied Energy, Elsevier, vol. 183(C), pages 645-658.
    10. Bressel, Mathieu & Hilairet, Mickael & Hissel, Daniel & Ould Bouamama, Belkacem, 2016. "Extended Kalman Filter for prognostic of Proton Exchange Membrane Fuel Cell," Applied Energy, Elsevier, vol. 164(C), pages 220-227.
    11. Chen, Huicui & Song, Zhen & Zhao, Xin & Zhang, Tong & Pei, Pucheng & Liang, Chen, 2018. "A review of durability test protocols of the proton exchange membrane fuel cells for vehicle," Applied Energy, Elsevier, vol. 224(C), pages 289-299.
    12. Xu, Liangfei & Ouyang, Minggao & Li, Jianqiu & Yang, Fuyuan & Lu, Languang & Hua, Jianfeng, 2013. "Optimal sizing of plug-in fuel cell electric vehicles using models of vehicle performance and system cost," Applied Energy, Elsevier, vol. 103(C), pages 477-487.
    13. Desantes, J.M. & Novella, R. & Pla, B. & Lopez-Juarez, M., 2021. "Impact of fuel cell range extender powertrain design on greenhouse gases and NOX emissions in automotive applications," Applied Energy, Elsevier, vol. 302(C).
    14. Liu, Jia & Yang, Hongxing & Zhou, Yuekuan, 2021. "Peer-to-peer energy trading of net-zero energy communities with renewable energy systems integrating hydrogen vehicle storage," Applied Energy, Elsevier, vol. 298(C).
    15. Chen, Kui & Laghrouche, Salah & Djerdir, Abdesslem, 2019. "Degradation model of proton exchange membrane fuel cell based on a novel hybrid method," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    16. Hu, Zunyan & Xu, Liangfei & Huang, Yiyuan & Li, Jianqiu & Ouyang, Minggao & Du, Xiaoli & Jiang, Hongliang, 2018. "Comprehensive analysis of galvanostatic charge method for fuel cell degradation diagnosis," Applied Energy, Elsevier, vol. 212(C), pages 1321-1332.
    17. Wu, Ziyang & Wang, Can & Wolfram, Paul & Zhang, Yaxin & Sun, Xin & Hertwich, Edgar, 2019. "Assessing electric vehicle policy with region-specific carbon footprints," Applied Energy, Elsevier, vol. 256(C).
    18. Sun, Zhendong & Wang, Yujie & Chen, Zonghai & Li, Xiyun, 2020. "Min-max game based energy management strategy for fuel cell/supercapacitor hybrid electric vehicles," Applied Energy, Elsevier, vol. 267(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Novella, Ricardo & García, Antonio & Gomez-Soriano, Josep & Fogué-Robles, Álvaro, 2023. "Exploring dilution potential for full load operation of medium duty hydrogen engine for the transport sector," Applied Energy, Elsevier, vol. 349(C).
    2. Piras, M. & De Bellis, V. & Malfi, E. & Novella, R. & Lopez-Juarez, M., 2024. "Hydrogen consumption and durability assessment of fuel cell vehicles in realistic driving," Applied Energy, Elsevier, vol. 358(C).
    3. Lopez-Juarez, M. & Rockstroh, T. & Novella, R. & Vijayagopal, R., 2024. "A methodology to develop multi-physics dynamic fuel cell system models validated with vehicle realistic drive cycle data," Applied Energy, Elsevier, vol. 358(C).
    4. Zuo, Jian & Steiner, Nadia Yousfi & Li, Zhongliang & Hissel, Daniel, 2024. "Health management review for fuel cells: Focus on action phase," Renewable and Sustainable Energy Reviews, Elsevier, vol. 201(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anselma, Pier Giuseppe & Belingardi, Giovanni, 2022. "Fuel cell electrified propulsion systems for long-haul heavy-duty trucks: present and future cost-oriented sizing," Applied Energy, Elsevier, vol. 321(C).
    2. Desantes, J.M. & Novella, R. & Pla, B. & Lopez-Juarez, M., 2021. "Impact of fuel cell range extender powertrain design on greenhouse gases and NOX emissions in automotive applications," Applied Energy, Elsevier, vol. 302(C).
    3. Chen, Kui & Badji, Abderrezak & Laghrouche, Salah & Djerdir, Abdesslem, 2022. "Polymer electrolyte membrane fuel cells degradation prediction using multi-kernel relevance vector regression and whale optimization algorithm," Applied Energy, Elsevier, vol. 318(C).
    4. Molina, S. & Novella, R. & Pla, B. & Lopez-Juarez, M., 2021. "Optimization and sizing of a fuel cell range extender vehicle for passenger car applications in driving cycle conditions," Applied Energy, Elsevier, vol. 285(C).
    5. Zuo, Jian & Steiner, Nadia Yousfi & Li, Zhongliang & Hissel, Daniel, 2024. "Health management review for fuel cells: Focus on action phase," Renewable and Sustainable Energy Reviews, Elsevier, vol. 201(C).
    6. Zhou, Yuekuan, 2022. "Energy sharing and trading on a novel spatiotemporal energy network in Guangdong-Hong Kong-Macao Greater Bay Area," Applied Energy, Elsevier, vol. 318(C).
    7. Zou, Weitao & Li, Jianwei & Yang, Qingqing & Wan, Xinming & He, Yuntang & Lan, Hao, 2023. "A real-time energy management approach with fuel cell and battery competition-synergy control for the fuel cell vehicle," Applied Energy, Elsevier, vol. 334(C).
    8. He, Yingdong & Zhou, Yuekuan & Liu, Jia & Liu, Zhengxuan & Zhang, Guoqiang, 2022. "An inter-city energy migration framework for regional energy balance through daily commuting fuel-cell vehicles," Applied Energy, Elsevier, vol. 324(C).
    9. Chen, Hong & Zhan, Zhigang & Jiang, Panxing & Sun, Yahao & Liao, Liwen & Wan, Xiongbiao & Du, Qing & Chen, Xiaosong & Song, Hao & Zhu, Ruijie & Shu, Zhanhong & Li, Shang & Pan, Mu, 2022. "Whole life cycle performance degradation test and RUL prediction research of fuel cell MEA," Applied Energy, Elsevier, vol. 310(C).
    10. Liu, Hao & Chen, Jian & Hissel, Daniel & Lu, Jianguo & Hou, Ming & Shao, Zhigang, 2020. "Prognostics methods and degradation indexes of proton exchange membrane fuel cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    11. Aihua Tang & Yuanhang Yang & Quanqing Yu & Zhigang Zhang & Lin Yang, 2022. "A Review of Life Prediction Methods for PEMFCs in Electric Vehicles," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    12. Liu, Ze & Xu, Sichuan & Zhao, Honghui & Wang, Yupeng, 2022. "Durability estimation and short-term voltage degradation forecasting of vehicle PEMFC system: Development and evaluation of machine learning models," Applied Energy, Elsevier, vol. 326(C).
    13. Pei, Pucheng & Chen, Dongfang & Wu, Ziyao & Ren, Peng, 2019. "Nonlinear methods for evaluating and online predicting the lifetime of fuel cells," Applied Energy, Elsevier, vol. 254(C).
    14. Chen, Kui & Laghrouche, Salah & Djerdir, Abdesslem, 2019. "Degradation model of proton exchange membrane fuel cell based on a novel hybrid method," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    15. Piras, M. & De Bellis, V. & Malfi, E. & Novella, R. & Lopez-Juarez, M., 2024. "Hydrogen consumption and durability assessment of fuel cell vehicles in realistic driving," Applied Energy, Elsevier, vol. 358(C).
    16. Song, Ke & Ding, Yuhang & Hu, Xiao & Xu, Hongjie & Wang, Yimin & Cao, Jing, 2021. "Degradation adaptive energy management strategy using fuel cell state-of-health for fuel economy improvement of hybrid electric vehicle," Applied Energy, Elsevier, vol. 285(C).
    17. Zhuang Tian & Zheng Wei & Jinhui Wang & Yinxiang Wang & Yuwei Lei & Ping Hu & S. M. Muyeen & Daming Zhou, 2023. "Research Progress on Aging Prediction Methods for Fuel Cells: Mechanism, Methods, and Evaluation Criteria," Energies, MDPI, vol. 16(23), pages 1-21, November.
    18. Jinquan, Guo & Hongwen, He & Jianwei, Li & Qingwu, Liu, 2022. "Driving information process system-based real-time energy management for the fuel cell bus to minimize fuel cell engine aging and energy consumption," Energy, Elsevier, vol. 248(C).
    19. Liu, Jia & Zhou, Yuekuan & Yang, Hongxing & Wu, Huijun, 2022. "Net-zero energy management and optimization of commercial building sectors with hybrid renewable energy systems integrated with energy storage of pumped hydro and hydrogen taxis," Applied Energy, Elsevier, vol. 321(C).
    20. Deng, Zhihua & Chan, Siew Hwa & Chen, Qihong & Liu, Hao & Zhang, Liyan & Zhou, Keliang & Tong, Sirui & Fu, Zhichao, 2023. "Efficient degradation prediction of PEMFCs using ELM-AE based on fuzzy extension broad learning system," Applied Energy, Elsevier, vol. 331(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:317:y:2022:i:c:s030626192200513x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.