IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v219y2018icp361-369.html
   My bibliography  Save this article

Planning of solar photovoltaics, battery energy storage system and gas micro turbine for coupled micro energy grids

Author

Listed:
  • Qiu, Jing
  • Zhao, Junhua
  • Yang, Hongming
  • Wang, Dongxiao
  • Dong, Zhao Yang

Abstract

This paper presents the planning of solar photovoltaics (PV), battery energy storage system (BESS) and gas-fired micro turbine (MT) in a coupled micro gas and electricity grid. The proposed model is formulated as a two-stage stochastic optimization problem, including the optimal investment in the first stage and the optimal operation in the second stage. To better understand the mutual interactions between electric and heat energy, the gas network models are taken into account. As a result, the fuel availability and price of the gas-fired MT can be explicitly modeled and analyzed. Moreover, to enhance the computational efficiency of the formulated mixed-integer quadratic programming problem, the point estimation method is used as the scenario reduction technique. The effectiveness of the proposed model is verified on a 14-bus coupled micro energy grid. Based on the case studies, the proposed two-stage planning model can identify a planning solution with the objective value of $99.3104, which is comprised of the daily capital recovery cost of $20.5070, the daily operating cost of $78.8034 for the coupled micro gas and electricity grid. Comparative studies demonstrate that the proposed approach can help the microgrid operator identify feasible and optimal planning solutions, and provide valuable guidance for energy infrastructure expansion from an integrated perspective.

Suggested Citation

  • Qiu, Jing & Zhao, Junhua & Yang, Hongming & Wang, Dongxiao & Dong, Zhao Yang, 2018. "Planning of solar photovoltaics, battery energy storage system and gas micro turbine for coupled micro energy grids," Applied Energy, Elsevier, vol. 219(C), pages 361-369.
  • Handle: RePEc:eee:appene:v:219:y:2018:i:c:p:361-369
    DOI: 10.1016/j.apenergy.2017.09.066
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917313508
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.09.066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shin, Joohyun & Lee, Jay H. & Realff, Matthew J., 2017. "Operational planning and optimal sizing of microgrid considering multi-scale wind uncertainty," Applied Energy, Elsevier, vol. 195(C), pages 616-633.
    2. Ogunjuyigbe, A.S.O. & Ayodele, T.R. & Akinola, O.A., 2016. "Optimal allocation and sizing of PV/Wind/Split-diesel/Battery hybrid energy system for minimizing life cycle cost, carbon emission and dump energy of remote residential building," Applied Energy, Elsevier, vol. 171(C), pages 153-171.
    3. Mashayekh, Salman & Stadler, Michael & Cardoso, Gonçalo & Heleno, Miguel, 2017. "A mixed integer linear programming approach for optimal DER portfolio, sizing, and placement in multi-energy microgrids," Applied Energy, Elsevier, vol. 187(C), pages 154-168.
    4. Yang, Hongming & Xiong, Tonglin & Qiu, Jing & Qiu, Duo & Dong, Zhao Yang, 2016. "Optimal operation of DES/CCHP based regional multi-energy prosumer with demand response," Applied Energy, Elsevier, vol. 167(C), pages 353-365.
    5. Wen, Shuli & Lan, Hai & Hong, Ying-Yi & Yu, David C. & Zhang, Lijun & Cheng, Peng, 2016. "Allocation of ESS by interval optimization method considering impact of ship swinging on hybrid PV/diesel ship power system," Applied Energy, Elsevier, vol. 175(C), pages 158-167.
    6. Hung, Duong Quoc & Mithulananthan, N. & Bansal, R.C., 2014. "An optimal investment planning framework for multiple distributed generation units in industrial distribution systems," Applied Energy, Elsevier, vol. 124(C), pages 62-72.
    7. Kabirian, Alireza & Hemmati, Mohammad Reza, 2007. "A strategic planning model for natural gas transmission networks," Energy Policy, Elsevier, vol. 35(11), pages 5656-5670, November.
    8. Mohammad Valipour, 2016. "How Much Meteorological Information Is Necessary to Achieve Reliable Accuracy for Rainfall Estimations?," Agriculture, MDPI, vol. 6(4), pages 1-9, October.
    9. Touretzky, Cara R. & McGuffin, Dana L. & Ziesmer, Jena C. & Baldea, Michael, 2016. "The effect of distributed electricity generation using natural gas on the electric and natural gas grids," Applied Energy, Elsevier, vol. 177(C), pages 500-514.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Bei & Li, Jiangchen, 2021. "Probabilistic sizing of a low-carbon emission power system considering HVDC transmission and microgrid clusters," Applied Energy, Elsevier, vol. 304(C).
    2. Anantha Krishnan, V. & Balamurugan, P., 2022. "An efficient DLN2-CRSO approach based dynamic stability enhancement in micro-grid system," Applied Energy, Elsevier, vol. 322(C).
    3. Wang, Yongli & Qi, Chengyuan & Dong, Huanran & Wang, Shuo & Wang, Xiaohai & Zeng, Ming & Zhu, Jinrong, 2020. "Optimal design of integrated energy system considering different battery operation strategy," Energy, Elsevier, vol. 212(C).
    4. Novoa, Laura & Flores, Robert & Brouwer, Jack, 2019. "Optimal renewable generation and battery storage sizing and siting considering local transformer limits," Applied Energy, Elsevier, vol. 256(C).
    5. Kim, Min Jae & Kim, Tong Seop, 2019. "Integration of compressed air energy storage and gas turbine to improve the ramp rate," Applied Energy, Elsevier, vol. 247(C), pages 363-373.
    6. Ihsan, Abbas & Brear, Michael J. & Jeppesen, Matthew, 2021. "Impact of operating uncertainty on the performance of distributed, hybrid, renewable power plants," Applied Energy, Elsevier, vol. 282(PB).
    7. Zhang, Xian & Chan, K.W. & Wang, Huaizhi & Hu, Jiefeng & Zhou, Bin & Zhang, Yan & Qiu, Jing, 2019. "Game-theoretic planning for integrated energy system with independent participants considering ancillary services of power-to-gas stations," Energy, Elsevier, vol. 176(C), pages 249-264.
    8. Xin Zhang & Jianhua Yang & Weizhou Wang & Man Zhang & Tianjun Jing, 2018. "Integrated Optimal Dispatch of a Rural Micro-Energy-Grid with Multi-Energy Stream Based on Model Predictive Control," Energies, MDPI, vol. 11(12), pages 1-23, December.
    9. Luis Fernando Grisales-Noreña & Bonie Johana Restrepo-Cuestas & Brandon Cortés-Caicedo & Jhon Montano & Andrés Alfonso Rosales-Muñoz & Marco Rivera, 2022. "Optimal Location and Sizing of Distributed Generators and Energy Storage Systems in Microgrids: A Review," Energies, MDPI, vol. 16(1), pages 1-30, December.
    10. Bozorgavari, Seyed Aboozar & Aghaei, Jamshid & Pirouzi, Sasan & Nikoobakht, Ahmad & Farahmand, Hossein & Korpås, Magnus, 2020. "Robust planning of distributed battery energy storage systems in flexible smart distribution networks: A comprehensive study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    11. Wang, Yunqi & Qiu, Jing & Tao, Yuechuan & Zhang, Xian & Wang, Guibin, 2020. "Low-carbon oriented optimal energy dispatch in coupled natural gas and electricity systems," Applied Energy, Elsevier, vol. 280(C).
    12. Balderrama, Sergio & Lombardi, Francesco & Riva, Fabio & Canedo, Walter & Colombo, Emanuela & Quoilin, Sylvain, 2019. "A two-stage linear programming optimization framework for isolated hybrid microgrids in a rural context: The case study of the “El Espino” community," Energy, Elsevier, vol. 188(C).
    13. Hang Liu & Yongcheng Wang & Shilin Nie & Yi Wang & Yu Chen, 2022. "Multistage Economic Scheduling Model of Micro-Energy Grids Considering Flexible Capacity Allocation," Sustainability, MDPI, vol. 14(15), pages 1-29, July.
    14. Guo, Li & Hou, Ruosong & Liu, Yixin & Wang, Chengshan & Lu, Hai, 2020. "A novel typical day selection method for the robust planning of stand-alone wind-photovoltaic-diesel-battery microgrid," Applied Energy, Elsevier, vol. 263(C).
    15. Guo, Caishan & Luo, Fengji & Cai, Zexiang & Dong, Zhao Yang & Zhang, Rui, 2021. "Integrated planning of internet data centers and battery energy storage systems in smart grids," Applied Energy, Elsevier, vol. 281(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohseni, Soheil & Khalid, Roomana & Brent, Alan C., 2023. "Stochastic, resilience-oriented optimal sizing of off-grid microgrids considering EV-charging demand response: An efficiency comparison of state-of-the-art metaheuristics," Applied Energy, Elsevier, vol. 341(C).
    2. Amir, Vahid & Azimian, Mahdi, 2020. "Dynamic Multi-Carrier Microgrid Deployment Under Uncertainty," Applied Energy, Elsevier, vol. 260(C).
    3. Zhang, Yajun & Gu, Chenghong & Yan, Xiaohe & Li, Furong, 2020. "Cournot oligopoly game-based local energy trading considering renewable energy uncertainty costs," Renewable Energy, Elsevier, vol. 159(C), pages 1117-1127.
    4. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "Design of distributed energy systems under uncertainty: A two-stage stochastic programming approach," Applied Energy, Elsevier, vol. 222(C), pages 932-950.
    5. Das, Barun K. & Al-Abdeli, Yasir M. & Kothapalli, Ganesh, 2017. "Optimisation of stand-alone hybrid energy systems supplemented by combustion-based prime movers," Applied Energy, Elsevier, vol. 196(C), pages 18-33.
    6. Ju, Liwei & Liu, Li & Han, Yingzhu & Yang, Shenbo & Li, Gen & Lu, Xiaolong & Liu, Yi & Qiao, Huiting, 2023. "Robust Multi-objective optimal dispatching model for a novel island micro energy grid incorporating biomass waste energy conversion system, desalination and power-to-hydrogen devices," Applied Energy, Elsevier, vol. 343(C).
    7. Bracco, Stefano & Delfino, Federico & Ferro, Giulio & Pagnini, Luisa & Robba, Michela & Rossi, Mansueto, 2018. "Energy planning of sustainable districts: Towards the exploitation of small size intermittent renewables in urban areas," Applied Energy, Elsevier, vol. 228(C), pages 2288-2297.
    8. Mateo, C. & Frías, P. & Tapia-Ahumada, K., 2020. "A comprehensive techno-economic assessment of the impact of natural gas-fueled distributed generation in European electricity distribution networks," Energy, Elsevier, vol. 192(C).
    9. Adefarati, T. & Bansal, R.C., 2017. "Reliability and economic assessment of a microgrid power system with the integration of renewable energy resources," Applied Energy, Elsevier, vol. 206(C), pages 911-933.
    10. Liu, Zifa & Chen, Yixiao & Zhuo, Ranqun & Jia, Hongjie, 2018. "Energy storage capacity optimization for autonomy microgrid considering CHP and EV scheduling," Applied Energy, Elsevier, vol. 210(C), pages 1113-1125.
    11. Soheil Mohseni & Alan C. Brent, 2022. "A Metaheuristic-Based Micro-Grid Sizing Model with Integrated Arbitrage-Aware Multi-Day Battery Dispatching," Sustainability, MDPI, vol. 14(19), pages 1-24, October.
    12. Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    13. Pregelj, Boštjan & Micor, Michał & Dolanc, Gregor & Petrovčič, Janko & Jovan, Vladimir, 2016. "Impact of fuel cell and battery size to overall system performance – A diesel fuel-cell APU case study," Applied Energy, Elsevier, vol. 182(C), pages 365-375.
    14. Nian Liu & Cheng Wang & Minyang Cheng & Jie Wang, 2016. "A Privacy-Preserving Distributed Optimal Scheduling for Interconnected Microgrids," Energies, MDPI, vol. 9(12), pages 1-18, December.
    15. repec:cty:dpaper:10.1080/0013791x.2011.573615 is not listed on IDEAS
    16. Avilés A., Camilo & Oliva H., Sebastian & Watts, David, 2019. "Single-dwelling and community renewable microgrids: Optimal sizing and energy management for new business models," Applied Energy, Elsevier, vol. 254(C).
    17. Grover-Silva, Etta & Heleno, Miguel & Mashayekh, Salman & Cardoso, Gonçalo & Girard, Robin & Kariniotakis, George, 2018. "A stochastic optimal power flow for scheduling flexible resources in microgrids operation," Applied Energy, Elsevier, vol. 229(C), pages 201-208.
    18. Ahmad Alzahrani & Senthil Kumar Ramu & Gunapriya Devarajan & Indragandhi Vairavasundaram & Subramaniyaswamy Vairavasundaram, 2022. "A Review on Hydrogen-Based Hybrid Microgrid System: Topologies for Hydrogen Energy Storage, Integration, and Energy Management with Solar and Wind Energy," Energies, MDPI, vol. 15(21), pages 1-32, October.
    19. Xu, Rong-Hong & Zhao, Tian & Ma, Huan & He, Ke-Lun & Lv, Hong-Kun & Guo, Xu-Tao & Chen, Qun, 2023. "Operation optimization of distributed energy systems considering nonlinear characteristics of multi-energy transport and conversion processes," Energy, Elsevier, vol. 283(C).
    20. Nasreddine Belbachir & Mohamed Zellagui & Samir Settoul & Claude Ziad El-Bayeh & Ragab A. El-Sehiemy, 2023. "Multi Dimension-Based Optimal Allocation of Uncertain Renewable Distributed Generation Outputs with Seasonal Source-Load Power Uncertainties in Electrical Distribution Network Using Marine Predator Al," Energies, MDPI, vol. 16(4), pages 1-24, February.
    21. Jamil, Basharat & Akhtar, Naiem, 2017. "Comparison of empirical models to estimate monthly mean diffuse solar radiation from measured data: Case study for humid-subtropical climatic region of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1326-1342.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:219:y:2018:i:c:p:361-369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.