IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v316y2022ics0306261922005037.html
   My bibliography  Save this article

Asymmetric phenomenon of flow and heat transfer in charging process of thermal energy storage based on an entire domain model

Author

Listed:
  • Ying, Xuchen
  • Huang, Weijia
  • Liu, Wenhua
  • Liu, Guiliang
  • Li, Jun
  • Yang, Mo

Abstract

Phase change energy storage is getting increasing attention as a representative technology to achieve carbon neutrality. The phase change process exists typical phenomenon of asymmetry that affects the energy storage performance. However, the mechanism of asymmetry is currently lack of elaboration because the half domain model is always used to simplify the numerical simulation and avoid the appearance of asymmetry. In this study, the entire domain model and boundary conditions were adopted and numerically simulated for the melting process of paraffin wax, i.e., the charging process of energy storage. The nonlinear dynamics method was applied to explain the asymmetric flow and heat transfer phenomenon. The charging model was verified at first, and the pear-shaped contour maps of temperature distribution, flow pattern, and liquid fraction were obtained. Then, three important Rayleigh numbers were found according to the stability of flow and heat transfer. The three-stage characteristic based on charging speed was proposed for charging process and was explained by thermal conduction or natural convection. The asymmetric phenomenon was elaborated on the cause of formation, change mechanism, and effect evaluation. Results show that natural convection accounts for the multiple solutions (including the asymmetric ones) of charging process. It is also pointed out that asymmetric solutions can exist under symmetric geometry structure. To accurately solve the charging process, it is necessary to use the entire domain model. Both the charging speed and energy storage capacity have a positive correlation with asymmetry. Thus, a potential idea for energy storage application was proposed to increase the charging speed; that is, adding thermal disturbance during the melting process to destroy flow stability and to enhance convective heat transfer. The research methods and findings will support the development of energy storage and numerical investigation in other related areas.

Suggested Citation

  • Ying, Xuchen & Huang, Weijia & Liu, Wenhua & Liu, Guiliang & Li, Jun & Yang, Mo, 2022. "Asymmetric phenomenon of flow and heat transfer in charging process of thermal energy storage based on an entire domain model," Applied Energy, Elsevier, vol. 316(C).
  • Handle: RePEc:eee:appene:v:316:y:2022:i:c:s0306261922005037
    DOI: 10.1016/j.apenergy.2022.119122
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922005037
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119122?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shao, Xue-Feng & Wang, Chao & Yang, Yong-Jian & Feng, Biao & Zhu, Zi-Qin & Wang, Wu-Jun & Zeng, Yi & Fan, Li-Wu, 2018. "Screening of sugar alcohols and their binary eutectic mixtures as phase change materials for low-to-medium temperature latent heat storage. (Ⅰ): Non-isothermal melting and crystallization behaviors," Energy, Elsevier, vol. 160(C), pages 1078-1090.
    2. Regin, A. Felix & Solanki, S.C. & Saini, J.S., 2006. "Latent heat thermal energy storage using cylindrical capsule: Numerical and experimental investigations," Renewable Energy, Elsevier, vol. 31(13), pages 2025-2041.
    3. Archibold, Antonio Ramos & Rahman, Muhammad M. & Yogi Goswami, D. & Stefanakos, Elias K., 2015. "The effects of radiative heat transfer during the melting process of a high temperature phase change material confined in a spherical shell," Applied Energy, Elsevier, vol. 138(C), pages 675-684.
    4. Khalilmoghadam, Pooria & Rajabi-Ghahnavieh, Abbas & Shafii, Mohammad Behshad, 2021. "A novel energy storage system for latent heat recovery in solar still using phase change material and pulsating heat pipe," Renewable Energy, Elsevier, vol. 163(C), pages 2115-2127.
    5. Xu, Ben & Li, Peiwen & Chan, Cholik, 2015. "Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: A review to recent developments," Applied Energy, Elsevier, vol. 160(C), pages 286-307.
    6. Klimeš, Lubomír & Charvát, Pavel & Mastani Joybari, Mahmood & Zálešák, Martin & Haghighat, Fariborz & Panchabikesan, Karthik & El Mankibi, Mohamed & Yuan, Yanping, 2020. "Computer modelling and experimental investigation of phase change hysteresis of PCMs: The state-of-the-art review," Applied Energy, Elsevier, vol. 263(C).
    7. Zheng, Zhang-Jing & Xu, Yang & Li, Ming-Jia, 2018. "Eccentricity optimization of a horizontal shell-and-tube latent-heat thermal energy storage unit based on melting and melting-solidifying performance," Applied Energy, Elsevier, vol. 220(C), pages 447-454.
    8. Fornarelli, F. & Camporeale, S.M. & Fortunato, B. & Torresi, M. & Oresta, P. & Magliocchetti, L. & Miliozzi, A. & Santo, G., 2016. "CFD analysis of melting process in a shell-and-tube latent heat storage for concentrated solar power plants," Applied Energy, Elsevier, vol. 164(C), pages 711-722.
    9. Choi, Sung Ho & Sohn, Dong Kee & Ko, Han Seo, 2021. "Performance enhancement of latent heat thermal energy storage by bubble-driven flow," Applied Energy, Elsevier, vol. 302(C).
    10. Shao, Xue-Feng & Yang, Sheng & Wang, Chao & Yang, Yong-Jian & Wang, Wu-Jun & Zeng, Yi & Fan, Li-Wu, 2019. "Screening of sugar alcohols and their binary eutectic mixtures as phase change materials for low-to-medium temperature thermal energy storage. (Ⅱ): Isothermal melting and crystallization behaviors," Energy, Elsevier, vol. 180(C), pages 572-583.
    11. Mahdi, Jasim M. & Mohammed, Hayder I. & Hashim, Emad T. & Talebizadehsardari, Pouyan & Nsofor, Emmanuel C., 2020. "Solidification enhancement with multiple PCMs, cascaded metal foam and nanoparticles in the shell-and-tube energy storage system," Applied Energy, Elsevier, vol. 257(C).
    12. Saffari, Mohammad & de Gracia, Alvaro & Fernández, Cèsar & Cabeza, Luisa F., 2017. "Simulation-based optimization of PCM melting temperature to improve the energy performance in buildings," Applied Energy, Elsevier, vol. 202(C), pages 420-434.
    13. Liu, Zhenyu & Yao, Yuanpeng & Wu, Huiying, 2013. "Numerical modeling for solid–liquid phase change phenomena in porous media: Shell-and-tube type latent heat thermal energy storage," Applied Energy, Elsevier, vol. 112(C), pages 1222-1232.
    14. Du, Kun & Calautit, John & Wang, Zhonghua & Wu, Yupeng & Liu, Hao, 2018. "A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges," Applied Energy, Elsevier, vol. 220(C), pages 242-273.
    15. Soni, Vikram & Kumar, Arvind & Jain, V.K., 2018. "Modeling of PCM melting: Analysis of discrepancy between numerical and experimental results and energy storage performance," Energy, Elsevier, vol. 150(C), pages 190-204.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenshuai Wang & Mo Yang, 2024. "The Nonlinear Flow Characteristics within Two-Dimensional and Three-Dimensional Counterflow Models within Symmetrical Structures," Energies, MDPI, vol. 17(13), pages 1-24, June.
    2. Luo, Qingyang & Liu, Xianglei & Xu, Qiao & Tian, Yang & Yao, Haichen & Wang, Jianguo & Lv, Shushan & Dang, Chunzhuo & Xuan, Yimin, 2023. "Ceramic nanoparticles enhancement of latent heat thermal energy storage properties for LiNO3/NaCl: Evaluation from material to system level," Applied Energy, Elsevier, vol. 331(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    2. Zhang, Chengbin & Li, Jie & Chen, Yongping, 2020. "Improving the energy discharging performance of a latent heat storage (LHS) unit using fractal-tree-shaped fins," Applied Energy, Elsevier, vol. 259(C).
    3. Fang, Y. & Qu, Z.G. & Zhang, J.F. & Xu, H.T. & Qi, G.L., 2020. "Simultaneous charging and discharging performance for a latent thermal energy storage system with a microencapsulated phase change material," Applied Energy, Elsevier, vol. 275(C).
    4. Wang, Zhifeng & Wu, Jiani & Lei, Dongqiang & Liu, Hong & Li, Jinping & Wu, Zhiyong, 2020. "Experimental study on latent thermal energy storage system with gradient porosity copper foam for mid-temperature solar energy application," Applied Energy, Elsevier, vol. 261(C).
    5. Pizzolato, Alberto & Sharma, Ashesh & Ge, Ruihuan & Maute, Kurt & Verda, Vittorio & Sciacovelli, Adriano, 2020. "Maximization of performance in multi-tube latent heat storage – Optimization of fins topology, effect of materials selection and flow arrangements," Energy, Elsevier, vol. 203(C).
    6. Solé, Aran & Falcoz, Quentin & Cabeza, Luisa F. & Neveu, Pierre, 2018. "Geometry optimization of a heat storage system for concentrated solar power plants (CSP)," Renewable Energy, Elsevier, vol. 123(C), pages 227-235.
    7. Yang, Sheng & Shao, Xue-Feng & Luo, Jia-Hao & Baghaei Oskouei, Seyedmohsen & Bayer, Özgür & Fan, Li-Wu, 2023. "A novel cascade latent heat thermal energy storage system consisting of erythritol and paraffin wax for deep recovery of medium-temperature industrial waste heat," Energy, Elsevier, vol. 265(C).
    8. Randeep Singh & Sadegh Sadeghi & Bahman Shabani, 2018. "Thermal Conductivity Enhancement of Phase Change Materials for Low-Temperature Thermal Energy Storage Applications," Energies, MDPI, vol. 12(1), pages 1-20, December.
    9. Facundo Bre & Antonio Caggiano & Eduardus A. B. Koenders, 2022. "Multiobjective Optimization of Cement-Based Panels Enhanced with Microencapsulated Phase Change Materials for Building Energy Applications," Energies, MDPI, vol. 15(14), pages 1-17, July.
    10. Li, Yantong & Huang, Gongsheng & Xu, Tao & Liu, Xiaoping & Wu, Huijun, 2018. "Optimal design of PCM thermal storage tank and its application for winter available open-air swimming pool," Applied Energy, Elsevier, vol. 209(C), pages 224-235.
    11. Jayathunga, D.S. & Karunathilake, H.P. & Narayana, M. & Witharana, S., 2024. "Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    12. Costa, Sol Carolina & Kenisarin, Murat, 2022. "A review of metallic materials for latent heat thermal energy storage: Thermophysical properties, applications, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    13. Khalil Anwar, M. & Yilbas, B.S. & Shuja, S.Z., 2016. "A thermal battery mimicking a concentrated volumetric solar receiver," Applied Energy, Elsevier, vol. 175(C), pages 16-30.
    14. Zhang, Shuai & Li, Ying & Yan, Yuying, 2024. "Hybrid sensible-latent heat thermal energy storage using natural stones to enhance heat transfer: Energy, exergy, and economic analysis," Energy, Elsevier, vol. 286(C).
    15. Mona Nazari Sam & Jens Schneider & Holger V. Lutze, 2023. "Modelling Porous Cementitious Media with/without Integrated Latent Heat Storage: Application Scenario," Energies, MDPI, vol. 16(18), pages 1-20, September.
    16. Pirasaci, Tolga & Wickramaratne, Chatura & Moloney, Francesca & Yogi Goswami, D. & Stefanakos, Elias, 2017. "Dynamics of phase change in a vertical PCM capsule in the presence of radiation at high temperatures," Applied Energy, Elsevier, vol. 206(C), pages 498-506.
    17. Mostafavi Tehrani, S. Saeed & Shoraka, Yashar & Diarce, Gonzalo & Taylor, Robert A., 2019. "An improved, generalized effective thermal conductivity method for rapid design of high temperature shell-and-tube latent heat thermal energy storage systems," Renewable Energy, Elsevier, vol. 132(C), pages 694-708.
    18. Tian, Shen & Ma, Jiahui & Shao, Shuangquan & Tian, Qingfeng & Wang, Zhiqiang & Zhang, Zheyu & Hu, Kaiyong, 2024. "Experimental and analytical study on continuous frozen/melting processes of latent thermal energy storage driven by bubble flow," Energy, Elsevier, vol. 290(C).
    19. Agnieszka Ochman & Wei-Qin Chen & Przemysław Błasiak & Michał Pomorski & Sławomir Pietrowicz, 2021. "The Use of Capsuled Paraffin Wax in Low-Temperature Thermal Energy Storage Applications: An Experimental and Numerical Investigation," Energies, MDPI, vol. 14(3), pages 1-27, January.
    20. Jacob, Rhys & Belusko, Martin & Liu, Ming & Saman, Wasim & Bruno, Frank, 2019. "Using renewables coupled with thermal energy storage to reduce natural gas consumption in higher temperature commercial/industrial applications," Renewable Energy, Elsevier, vol. 131(C), pages 1035-1046.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:316:y:2022:i:c:s0306261922005037. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.