IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v314y2022ics0306261922003075.html
   My bibliography  Save this article

User-involved charging control for lithium-ion batteries with economic cost optimization

Author

Listed:
  • Ouyang, Quan
  • Fang, Ruyi
  • Xu, Guotuan
  • Liu, Yonggang

Abstract

Effective lithium-ion battery charging plays an essential role in promoting the development of electrified transportation. In this work, based on a coupled electrothermal model, an optimal charging control strategy is proposed by formulating a multi-objective optimization problem with comprehensively taking into account the user demand realization, economic cost optimization, energy loss reduction, and safety-related constraints. Next, the barrier method is employed to solve it to obtain the optimal charging current. This work highlights the superiorities of the multi-objective optimal charging approach that can intelligently adjust the charging current according to the user demand and peak–valley time-of-use electricity price, which can not only accomplish the user charging demand but also bring the benefit of less electricity fee and energy loss, thus alleviating the financial burden of users. At last, extensive simulation and experimental results validate the effectiveness of the designed multi-objective optimal charging control method.

Suggested Citation

  • Ouyang, Quan & Fang, Ruyi & Xu, Guotuan & Liu, Yonggang, 2022. "User-involved charging control for lithium-ion batteries with economic cost optimization," Applied Energy, Elsevier, vol. 314(C).
  • Handle: RePEc:eee:appene:v:314:y:2022:i:c:s0306261922003075
    DOI: 10.1016/j.apenergy.2022.118878
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922003075
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.118878?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Li & Li, Yong & Huang, Yuduo & Yu, Jiaqi & Qiao, Xuebo & Wang, Yixiao & Huang, Chun & Cao, Yijia, 2020. "Optimization of multi-stage constant current charging pattern based on Taguchi method for Li-Ion battery," Applied Energy, Elsevier, vol. 259(C).
    2. Jiang, Benben & Berliner, Marc D. & Lai, Kun & Asinger, Patrick A. & Zhao, Hongbo & Herring, Patrick K. & Bazant, Martin Z. & Braatz, Richard D., 2022. "Fast charging design for Lithium-ion batteries via Bayesian optimization," Applied Energy, Elsevier, vol. 307(C).
    3. Haitao Min & Weiyi Sun & Xinyong Li & Dongni Guo & Yuanbin Yu & Tao Zhu & Zhongmin Zhao, 2017. "Research on the Optimal Charging Strategy for Li-Ion Batteries Based on Multi-Objective Optimization," Energies, MDPI, vol. 10(5), pages 1-15, May.
    4. Yin, Yilin & Choe, Song-Yul, 2020. "Actively temperature controlled health-aware fast charging method for lithium-ion battery using nonlinear model predictive control," Applied Energy, Elsevier, vol. 271(C).
    5. Tian, Jinpeng & Xiong, Rui & Shen, Weixiang & Lu, Jiahuan, 2021. "State-of-charge estimation of LiFePO4 batteries in electric vehicles: A deep-learning enabled approach," Applied Energy, Elsevier, vol. 291(C).
    6. Zou, Changfu & Hu, Xiaosong & Wei, Zhongbao & Tang, Xiaolin, 2017. "Electrothermal dynamics-conscious lithium-ion battery cell-level charging management via state-monitored predictive control," Energy, Elsevier, vol. 141(C), pages 250-259.
    7. Su Su & Hao Li & David Wenzhong Gao, 2017. "Optimal Planning of Charging for Plug-In Electric Vehicles Focusing on Users’ Benefits," Energies, MDPI, vol. 10(7), pages 1-15, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Shuo & Li, Xinxin & Li, Yingzi & Zheng, Yidan & Liu, Jie, 2023. "A green-fitting dispatching model of station cluster for battery swapping under charging-discharging mode," Energy, Elsevier, vol. 276(C).
    2. García-Triviño, Pablo & Sarrias-Mena, Raúl & García-Vázquez, Carlos A. & Leva, Sonia & Fernández-Ramírez, Luis M., 2023. "Optimal online battery power control of grid-connected energy-stored quasi-impedance source inverter with PV system," Applied Energy, Elsevier, vol. 329(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Zhaohui & Fu, Yijie & Liang, Hong & Gao, Renjing & Liu, Shutian, 2023. "A module-level charging optimization method of lithium-ion battery considering temperature gradient effect of liquid cooling and charging time," Energy, Elsevier, vol. 265(C).
    2. Tian, Yong & Huang, Zhijia & Tian, Jindong & Li, Xiaoyu, 2022. "State of charge estimation of lithium-ion batteries based on cubature Kalman filters with different matrix decomposition strategies," Energy, Elsevier, vol. 238(PC).
    3. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiao & Fernandez, Carlos, 2023. "A hybrid probabilistic correction model for the state of charge estimation of lithium-ion batteries considering dynamic currents and temperatures," Energy, Elsevier, vol. 273(C).
    4. Li, Niansi & Liu, Xiaoyong & Yu, Bendong & Li, Liang & Xu, Jianqiang & Tan, Qiong, 2021. "Study on the environmental adaptability of lithium-ion battery powered UAV under extreme temperature conditions," Energy, Elsevier, vol. 219(C).
    5. Ramadan, Mohamad & Murr, Rabih & Khaled, Mahmoud & Olabi, Abdul Ghani, 2018. "Mixed numerical - Experimental approach to enhance the heat pump performance by drain water heat recovery," Energy, Elsevier, vol. 149(C), pages 1010-1021.
    6. Hu, Chunsheng & Ma, Liang & Guo, Shanshan & Guo, Gangsheng & Han, Zhiqiang, 2022. "Deep learning enabled state-of-charge estimation of LiFePO4 batteries: A systematic validation on state-of-the-art charging protocols," Energy, Elsevier, vol. 246(C).
    7. Zhang, Yagang & Zhang, Jinghui & Yu, Leyi & Pan, Zhiya & Feng, Changyou & Sun, Yiqian & Wang, Fei, 2022. "A short-term wind energy hybrid optimal prediction system with denoising and novel error correction technique," Energy, Elsevier, vol. 254(PC).
    8. Haitao Min & Boshi Wang & Weiyi Sun & Zhaopu Zhang & Yuanbin Yu & Yanzhou Zhang, 2020. "Research on the Combined Control Strategy of Low Temperature Charging and Heating of Lithium-Ion Power Battery Based on Adaptive Fuzzy Control," Energies, MDPI, vol. 13(7), pages 1-21, April.
    9. Meng, Lingyu & See, K.W. & Wang, Guofa & Wang, Yunpeng & Zhang, Yong & Zang, Caiyun & Xie, Bin, 2022. "Explosion-proof lithium-ion battery pack – In-depth investigation and experimental study on the design criteria," Energy, Elsevier, vol. 249(C).
    10. Yang, Fangfang & Song, Xiangbao & Dong, Guangzhong & Tsui, Kwok-Leung, 2019. "A coulombic efficiency-based model for prognostics and health estimation of lithium-ion batteries," Energy, Elsevier, vol. 171(C), pages 1173-1182.
    11. Shanshan Guo & Zhiqiang Han & Jun Wei & Shenggang Guo & Liang Ma, 2022. "A Novel DC-AC Fast Charging Technology for Lithium-Ion Power Battery at Low-Temperatures," Sustainability, MDPI, vol. 14(11), pages 1-10, May.
    12. Zhang, Cetengfei & Zhou, Quan & Hua, Min & Xu, Hongming & Bassett, Mike & Zhang, Fanggang, 2023. "Cuboid equivalent consumption minimization strategy for energy management of multi-mode plug-in hybrid vehicles considering diverse time scale objectives," Applied Energy, Elsevier, vol. 351(C).
    13. Yin, Yilin & Choe, Song-Yul, 2020. "Actively temperature controlled health-aware fast charging method for lithium-ion battery using nonlinear model predictive control," Applied Energy, Elsevier, vol. 271(C).
    14. Fanqi Meng & Xiaohong Su, 2017. "Reducing WCET Overestimations by Correcting Errors in Loop Bound Constraints," Energies, MDPI, vol. 10(12), pages 1-18, December.
    15. Gao, Yizhao & Sun, Ziqiang & Zhang, Dong & Shi, Dapai & Zhang, Xi, 2023. "Determination of half-cell open-circuit potential curve of silicon-graphite in a physics-based model for lithium-ion batteries," Applied Energy, Elsevier, vol. 349(C).
    16. Song, Minseok & Choe, Song-Yul, 2022. "Parameter sensitivity analysis of a reduced-order electrochemical-thermal model for heat generation rate of lithium-ion batteries," Applied Energy, Elsevier, vol. 305(C).
    17. Ardani, M.I. & Patel, Y. & Siddiq, A. & Offer, G.J. & Martinez-Botas, R.F., 2018. "Combined experimental and numerical evaluation of the differences between convective and conductive thermal control on the performance of a lithium ion cell," Energy, Elsevier, vol. 144(C), pages 81-97.
    18. Jie Song & Xin Pan & Chao Lu & Hanchen Xu, 2017. "A Simulation-Based Optimization Method for Hybrid Frequency Regulation System Configuration," Energies, MDPI, vol. 10(9), pages 1-14, August.
    19. Yan Cheng & Xuesen Zhang & Xiaoqiang Wang & Jianhua Li, 2022. "Battery State of Charge Estimation Based on Composite Multiscale Wavelet Transform," Energies, MDPI, vol. 15(6), pages 1-16, March.
    20. Ye Yang & Youtong Zhang & Jingyi Tian & Si Zhang, 2018. "Research on a Plug-In Hybrid Electric Bus Energy Management Strategy Considering Drivability," Energies, MDPI, vol. 11(8), pages 1-22, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:314:y:2022:i:c:s0306261922003075. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.