IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v329y2023ics0306261922015434.html
   My bibliography  Save this article

Optimal online battery power control of grid-connected energy-stored quasi-impedance source inverter with PV system

Author

Listed:
  • García-Triviño, Pablo
  • Sarrias-Mena, Raúl
  • García-Vázquez, Carlos A.
  • Leva, Sonia
  • Fernández-Ramírez, Luis M.

Abstract

This study presents an optimal online control that implements a biogeography-based optimization (BBO) algorithm on a battery energy system (BES) integrated into an energy-stored quasi-impedance source inverter (qZSI) that connects a photovoltaic (PV) power plant to the grid. The BBO algorithm was used to tune the PI regulator in the BES current control loop by minimizing the integral time absolute error (ITAE). Two different options for the BBO are compared in this application:1) a PI controller with online self-tuning based on BBO, and 2) a PI controller with offline tuning using BBO. Moreover, the BBO-based PI controllers were compared with a third controller tuned online using the particle swarm optimization (PSO) algorithm. To evaluate and compare the controllers, a PV power plant with a battery energy-stored qZSI was simulated under different operating conditions, such as step changes in the BES current reference, different sun irradiance, and a grid voltage sag. The results demonstrate better control of the BES current with the online tuning techniques (BBO and PSO) than with the offline tuning procedure, and similar results between the two online tuning algorithms. Nevertheless, throughout the simulation, the time of use of the BBO algorithm was almost 2.5 times smaller than the PSO algorithm. Therefore, the online BBO-based PI controller is considered the most suitable option.

Suggested Citation

  • García-Triviño, Pablo & Sarrias-Mena, Raúl & García-Vázquez, Carlos A. & Leva, Sonia & Fernández-Ramírez, Luis M., 2023. "Optimal online battery power control of grid-connected energy-stored quasi-impedance source inverter with PV system," Applied Energy, Elsevier, vol. 329(C).
  • Handle: RePEc:eee:appene:v:329:y:2023:i:c:s0306261922015434
    DOI: 10.1016/j.apenergy.2022.120286
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922015434
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120286?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alam, Mollah Rezaul & Alam, M.J.E. & Somani, Abhishek & Melton, Ronald B. & Tushar, Wayes & Bai, Feifei & Yan, Ruifeng & Saha, Tapan K., 2021. "Evaluating the feasibility of transactive approach for voltage management using inverters of a PV plant," Applied Energy, Elsevier, vol. 291(C).
    2. Sheik Mohammed, S. & Devaraj, D. & Imthias Ahamed, T.P., 2016. "A novel hybrid Maximum Power Point Tracking Technique using Perturb & Observe algorithm and Learning Automata for solar PV system," Energy, Elsevier, vol. 112(C), pages 1096-1106.
    3. Rajesh, R. & Carolin Mabel, M., 2015. "A comprehensive review of photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 231-248.
    4. Jing Yuan & Yongheng Yang & Frede Blaabjerg, 2020. "A Switched Quasi-Z-Source Inverter with Continuous Input Currents," Energies, MDPI, vol. 13(6), pages 1-12, March.
    5. Howlader, Abdul Motin & Sadoyama, Staci & Roose, Leon R. & Chen, Yan, 2020. "Active power control to mitigate voltage and frequency deviations for the smart grid using smart PV inverters," Applied Energy, Elsevier, vol. 258(C).
    6. Madasamy Periyanayagam & Suresh Kumar V & Bharatiraja Chokkalingam & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Yusuff Adedayo, 2020. "A Modified High Voltage Gain Quasi-Impedance Source Coupled Inductor Multilevel Inverter for Photovoltaic Application," Energies, MDPI, vol. 13(4), pages 1-31, February.
    7. Ouyang, Quan & Fang, Ruyi & Xu, Guotuan & Liu, Yonggang, 2022. "User-involved charging control for lithium-ion batteries with economic cost optimization," Applied Energy, Elsevier, vol. 314(C).
    8. Mehran Tamjidy & Shahla Paslar & B.T. Hang Tuah Baharudin & Tang Sai Hong & M.K.A. Ariffin, 2015. "Biogeography based optimization (BBO) algorithm to minimise non-productive time during hole-making process," International Journal of Production Research, Taylor & Francis Journals, vol. 53(6), pages 1880-1894, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Horrillo-Quintero, Pablo & García-Triviño, Pablo & Sarrias-Mena, Raúl & García-Vázquez, Carlos A. & Fernández-Ramírez, Luis M., 2023. "Model predictive control of a microgrid with energy-stored quasi-Z-source cascaded H-bridge multilevel inverter and PV systems," Applied Energy, Elsevier, vol. 346(C).
    2. Ana Cabrera-Tobar & Francesco Grimaccia & Sonia Leva, 2023. "Energy Resilience in Telecommunication Networks: A Comprehensive Review of Strategies and Challenges," Energies, MDPI, vol. 16(18), pages 1-23, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Oliveira-Assis, Lais & Soares-Ramos, Emanuel P.P. & Sarrias-Mena, Raúl & García-Triviño, Pablo & González-Rivera, Enrique & Sánchez-Sainz, Higinio & Llorens-Iborra, Francisco & Fernández-Ramírez, L, 2022. "Simplified model of battery energy-stored quasi-Z-source inverter-based photovoltaic power plant with Twofold energy management system," Energy, Elsevier, vol. 244(PA).
    2. Julio López Seguel & Seleme I. Seleme & Lenin M. F. Morais, 2022. "Comparative Study of Buck-Boost, SEPIC, Cuk and Zeta DC-DC Converters Using Different MPPT Methods for Photovoltaic Applications," Energies, MDPI, vol. 15(21), pages 1-26, October.
    3. Julio López Seguel & Seleme I. Seleme, 2021. "Robust Digital Control Strategy Based on Fuzzy Logic for a Solar Charger of VRLA Batteries," Energies, MDPI, vol. 14(4), pages 1-27, February.
    4. A.S. Jameel Hassan & Umar Marikkar & G.W. Kasun Prabhath & Aranee Balachandran & W.G. Chaminda Bandara & Parakrama B. Ekanayake & Roshan I. Godaliyadda & Janaka B. Ekanayake, 2021. "A Sensitivity Matrix Approach Using Two-Stage Optimization for Voltage Regulation of LV Networks with High PV Penetration," Energies, MDPI, vol. 14(20), pages 1-24, October.
    5. Bader N. Alajmi & Mostafa I. Marei & Ibrahim Abdelsalam & Mohamed F. AlHajri, 2021. "Analysis and Design of a Multi-Port DC-DC Converter for Interfacing PV Systems," Energies, MDPI, vol. 14(7), pages 1-17, April.
    6. Başoğlu, Mustafa Engin & Çakır, Bekir, 2016. "Comparisons of MPPT performances of isolated and non-isolated DC–DC converters by using a new approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1100-1113.
    7. Arash Khalilnejad & Aditya Sundararajan & Alireza Abbaspour & Arif Sarwat, 2016. "Optimal Operation of Combined Photovoltaic Electrolyzer Systems," Energies, MDPI, vol. 9(5), pages 1-12, April.
    8. Cao, Di & Zhao, Junbo & Hu, Weihao & Ding, Fei & Yu, Nanpeng & Huang, Qi & Chen, Zhe, 2022. "Model-free voltage control of active distribution system with PVs using surrogate model-based deep reinforcement learning," Applied Energy, Elsevier, vol. 306(PA).
    9. Sherif M. Dabour & Ahmed A. Aboushady & I. A. Gowaid & Mohamed. A. Elgenedy & Mohamed E. Farrag, 2022. "Performance Analysis and Evaluation of Multiphase Split-Source Inverters," Energies, MDPI, vol. 15(22), pages 1-20, November.
    10. Kang, Jia-Ning & Wei, Yi-Ming & Liu, Lan-Cui & Han, Rong & Yu, Bi-Ying & Wang, Jin-Wei, 2020. "Energy systems for climate change mitigation: A systematic review," Applied Energy, Elsevier, vol. 263(C).
    11. Ivan Udalov, 2021. "The Transition to Renewable Energy Sources as a Threat to Resource Economies," International Journal of Energy Economics and Policy, Econjournals, vol. 11(3), pages 460-467.
    12. Boukenoui, R. & Ghanes, M. & Barbot, J.-P. & Bradai, R. & Mellit, A. & Salhi, H., 2017. "Experimental assessment of Maximum Power Point Tracking methods for photovoltaic systems," Energy, Elsevier, vol. 132(C), pages 324-340.
    13. Alireza Gorjian & Mohsen Eskandari & Mohammad H. Moradi, 2023. "Conservation Voltage Reduction in Modern Power Systems: Applications, Implementation, Quantification, and AI-Assisted Techniques," Energies, MDPI, vol. 16(5), pages 1-36, March.
    14. Xenia Tabachkova, 2021. "Consequences of Oil Supply and Demand on the Electricity Market: Coronavirus Effect," International Journal of Energy Economics and Policy, Econjournals, vol. 11(4), pages 573-580.
    15. Mao, Mingxuan & Zhang, Li & Duan, Pan & Duan, Qichang & Yang, Ming, 2018. "Grid-connected modular PV-Converter system with shuffled frog leaping algorithm based DMPPT controller," Energy, Elsevier, vol. 143(C), pages 181-190.
    16. Gong, Yu & Liu, Pan & Liu, Yini & Huang, Kangdi, 2021. "Robust operation interval of a large-scale hydro-photovoltaic power system to cope with emergencies," Applied Energy, Elsevier, vol. 290(C).
    17. Sri Revathi, B. & Prabhakar, M., 2016. "Non isolated high gain DC-DC converter topologies for PV applications – A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 920-933.
    18. Madhu Andela & Ahmmadhussain Shaik & Saicharan Beemagoni & Vishal Kurimilla & Rajagopal Veramalla & Amritha Kodakkal & Surender Reddy Salkuti, 2022. "Solar Photovoltaic System-Based Reduced Switch Multilevel Inverter for Improved Power Quality," Clean Technol., MDPI, vol. 4(1), pages 1-13, January.
    19. Babatunde, A.A. & Abbasoglu, S. & Senol, M., 2018. "Analysis of the impact of dust, tilt angle and orientation on performance of PV Plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 1017-1026.
    20. Reshma Gopi, R. & Sreejith, S., 2018. "Converter topologies in photovoltaic applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1-14.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:329:y:2023:i:c:s0306261922015434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.