IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v276y2023ics0360544223009945.html
   My bibliography  Save this article

A green-fitting dispatching model of station cluster for battery swapping under charging-discharging mode

Author

Listed:
  • Zhang, Shuo
  • Li, Xinxin
  • Li, Yingzi
  • Zheng, Yidan
  • Liu, Jie

Abstract

The comprehensive promotion of electric vehicles is critical for green and low-carbon energy transformation and dual-carbon goals in China. Battery swapping station is a hub to meet the battery-swapping demands of EVs and consumes renewable energy power (REP). Moreover, the potential of battery swapping station cluster (BSSC) must be explored urgently. Therefore, the day-ahead dispatching model of BSSC is proposed for the efficient consumption of REP and battery-swapping demands of electric taxis (ETs) in this paper. Firstly, the battery-swapping demands of ETs in dynamic spatiotemporal distribution are aggregated by the KNN algorithm. Secondly, a dual-objective model of the day-ahead dispatching model with economy and efficient consumption of REP is constructed, and the NSGA-II algorithm obtains the optimal strategy. Finally, taking a city of China as an example, the charging-discharging strategy of BSSC is provided. The results show that the day-ahead dispatching model is of practical significance to get an optimal charging-discharging strategy of cluster loads for REP consumption and economic battery-swapping service.

Suggested Citation

  • Zhang, Shuo & Li, Xinxin & Li, Yingzi & Zheng, Yidan & Liu, Jie, 2023. "A green-fitting dispatching model of station cluster for battery swapping under charging-discharging mode," Energy, Elsevier, vol. 276(C).
  • Handle: RePEc:eee:energy:v:276:y:2023:i:c:s0360544223009945
    DOI: 10.1016/j.energy.2023.127600
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223009945
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127600?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ramos Muñoz, Edgar & Razeghi, Ghazal & Zhang, Li & Jabbari, Faryar, 2016. "Electric vehicle charging algorithms for coordination of the grid and distribution transformer levels," Energy, Elsevier, vol. 113(C), pages 930-942.
    2. Yang, Jun & Guo, Fang & Zhang, Min, 2017. "Optimal planning of swapping/charging station network with customer satisfaction," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 174-197.
    3. Hanemann, Philipp & Behnert, Marika & Bruckner, Thomas, 2017. "Effects of electric vehicle charging strategies on the German power system," Applied Energy, Elsevier, vol. 203(C), pages 608-622.
    4. Mahoor, Mohsen & Hosseini, Zohreh S. & Khodaei, Amin, 2019. "Least-cost operation of a battery swapping station with random customer requests," Energy, Elsevier, vol. 172(C), pages 913-921.
    5. Liang, Yanni & Cai, Hua & Zou, Guilin, 2021. "Configuration and system operation for battery swapping stations in Beijing," Energy, Elsevier, vol. 214(C).
    6. Wu, Chuantao & Lin, Xiangning & Sui, Quan & Wang, Zhixun & Feng, Zhongnan & Li, Zhengtian, 2021. "Two-stage self-scheduling of battery swapping station in day-ahead energy and frequency regulation markets," Applied Energy, Elsevier, vol. 283(C).
    7. Li, Ying & Davis, Chris & Lukszo, Zofia & Weijnen, Margot, 2016. "Electric vehicle charging in China’s power system: Energy, economic and environmental trade-offs and policy implications," Applied Energy, Elsevier, vol. 173(C), pages 535-554.
    8. Ji, Zhenya & Huang, Xueliang, 2018. "Plug-in electric vehicle charging infrastructure deployment of China towards 2020: Policies, methodologies, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 710-727.
    9. Ouyang, Quan & Fang, Ruyi & Xu, Guotuan & Liu, Yonggang, 2022. "User-involved charging control for lithium-ion batteries with economic cost optimization," Applied Energy, Elsevier, vol. 314(C).
    10. Das, H.S. & Rahman, M.M. & Li, S. & Tan, C.W., 2020. "Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    11. Sultana, U. & Khairuddin, Azhar B. & Sultana, Beenish & Rasheed, Nadia & Qazi, Sajid Hussain & Malik, Nimra Riaz, 2018. "Placement and sizing of multiple distributed generation and battery swapping stations using grasshopper optimizer algorithm," Energy, Elsevier, vol. 165(PA), pages 408-421.
    12. Sathaye, Nakul, 2014. "The optimal design and cost implications of electric vehicle taxi systems," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 264-283.
    13. Liang, Yanni & Zhang, Xingping, 2018. "Battery swap pricing and charging strategy for electric taxis in China," Energy, Elsevier, vol. 147(C), pages 561-577.
    14. Woo, Soomin & Bae, Sangjae & Moura, Scott J., 2021. "Pareto optimality in cost and service quality for an Electric Vehicle charging facility," Applied Energy, Elsevier, vol. 290(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Dingsong & Wang, Zhenpo & Liu, Peng & Wang, Shuo & Dorrell, David G. & Li, Xiaohui & Zhan, Weipeng, 2023. "Operation optimization approaches of electric vehicle battery swapping and charging station: A literature review," Energy, Elsevier, vol. 263(PE).
    2. Zhan, Weipeng & Wang, Zhenpo & Zhang, Lei & Liu, Peng & Cui, Dingsong & Dorrell, David G., 2022. "A review of siting, sizing, optimal scheduling, and cost-benefit analysis for battery swapping stations," Energy, Elsevier, vol. 258(C).
    3. Yan, Jie & Menghwar, Mohan & Asghar, Ehtisham & Kumar Panjwani, Manoj & Liu, Yongqian, 2019. "Real-time energy management for a smart-community microgrid with battery swapping and renewables," Applied Energy, Elsevier, vol. 238(C), pages 180-194.
    4. Hu, Xu & Yang, Zhaojun & Sun, Jun & Zhang, Yali, 2023. "Optimal pricing strategy for electric vehicle battery swapping: Pay-per-swap or subscription?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 171(C).
    5. Wang, Yang & Lai, Kexing & Chen, Fengyun & Li, Zhengming & Hu, Chunhua, 2019. "Shadow price based co-ordination methods of microgrids and battery swapping stations," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    6. Guohao Li & Tao Wang, 2022. "Long-Term Leases vs. One-Off Purchases: Game Analysis on Battery Swapping Mode Considering Cascade Utilization and Power Structure," Sustainability, MDPI, vol. 14(24), pages 1-28, December.
    7. Tao, Ye & Huang, Miaohua & Chen, Yupu & Yang, Lan, 2020. "Orderly charging strategy of battery electric vehicle driven by real-world driving data," Energy, Elsevier, vol. 193(C).
    8. Xuewen Geng & Fengbin An & Chengmin Wang & Xi He, 2023. "Battery Swapping Station Pricing Optimization Considering Market Clearing and Electric Vehicles’ Driving Demand," Energies, MDPI, vol. 16(8), pages 1-14, April.
    9. Liang, Yanni & Cai, Hua & Zou, Guilin, 2021. "Configuration and system operation for battery swapping stations in Beijing," Energy, Elsevier, vol. 214(C).
    10. Khardenavis, Amaiya & Hewage, Kasun & Perera, Piyaruwan & Shotorbani, Amin Mohammadpour & Sadiq, Rehan, 2021. "Mobile energy hub planning for complex urban networks: A robust optimization approach," Energy, Elsevier, vol. 235(C).
    11. Mahoor, Mohsen & Hosseini, Zohreh S. & Khodaei, Amin, 2019. "Least-cost operation of a battery swapping station with random customer requests," Energy, Elsevier, vol. 172(C), pages 913-921.
    12. Yang, Jie & Liu, Wei & Ma, Kai & Yue, Zhiyuan & Zhu, Anhu & Guo, Shiliang, 2023. "An optimal battery allocation model for battery swapping station of electric vehicles," Energy, Elsevier, vol. 272(C).
    13. Zhang, Mingze & Li, Weidong & Yu, Samson Shenglong & Wen, Kerui & Zhou, Chen & Shi, Peng, 2021. "A unified configurational optimization framework for battery swapping and charging stations considering electric vehicle uncertainty," Energy, Elsevier, vol. 218(C).
    14. Kaifu Yuan & Chao Li & Guangqiang Wu, 2023. "Study on Vehicle Supply Chain Operation Mode Selection Based on Battery Leasing and Battery Swapping Services," Mathematics, MDPI, vol. 11(14), pages 1-21, July.
    15. Wang, Ziqi & Hou, Sizu, 2023. "A real-time strategy for vehicle-to-station recommendation in battery swapping mode," Energy, Elsevier, vol. 272(C).
    16. Rahman, Syed & Khan, Irfan Ahmed & Khan, Ashraf Ali & Mallik, Ayan & Nadeem, Muhammad Faisal, 2022. "Comprehensive review & impact analysis of integrating projected electric vehicle charging load to the existing low voltage distribution system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    17. Nayak, Dhyaan Sandeep & Misra, Shamik, 2024. "An operational scheduling framework for Electric Vehicle Battery Swapping Station under demand uncertainty," Energy, Elsevier, vol. 290(C).
    18. Doluweera, Ganesh & Hahn, Fabian & Bergerson, Joule & Pruckner, Marco, 2020. "A scenario-based study on the impacts of electric vehicles on energy consumption and sustainability in Alberta," Applied Energy, Elsevier, vol. 268(C).
    19. Liang, Yanni & Zhang, Xingping, 2018. "Battery swap pricing and charging strategy for electric taxis in China," Energy, Elsevier, vol. 147(C), pages 561-577.
    20. Gönül, Ömer & Duman, A. Can & Güler, Önder, 2021. "Electric vehicles and charging infrastructure in Turkey: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:276:y:2023:i:c:s0360544223009945. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.