IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v38y2012i1p331-345.html
   My bibliography  Save this article

Energy efficiency measurement in industrial processes

Author

Listed:
  • Giacone, E.
  • Mancò, S.

Abstract

Although the meaning of energy efficiency is clear, different definitions exist and important issues relating to its implementation still need to be addressed. It is now recognised that complicating factors – such as complex industrial sites and energy flows, multiple products and fuels, and the influence of production rate on energy efficiency – render it necessary to adopt a structured framework to define and measure energy efficiency more precisely. In this paper, a methodology is proposed to build such a framework. The whole energy system of a site is represented using a single matrix equation, which expresses the relationship between imported energies and energy drivers. The elements of the matrix are the specific energy consumptions of each single process. Mathematical process modelling, through statistical analysis of energy consumption data, is used to quantify the specific energy consumption as a function of the output. The results of this structured approach are relevant for energy benchmarking, budgeting and targeting purposes. Furthermore, this approach is suitable for implementation in an energy management system standard (e.g. EN 16001, ISO 50001) or LCA standard (e.g. ISO 14044). Glass and cast iron melting processes are presented in order to illustrate the application of the method.

Suggested Citation

  • Giacone, E. & Mancò, S., 2012. "Energy efficiency measurement in industrial processes," Energy, Elsevier, vol. 38(1), pages 331-345.
  • Handle: RePEc:eee:energy:v:38:y:2012:i:1:p:331-345
    DOI: 10.1016/j.energy.2011.11.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211007857
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.11.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Siitonen, Sari & Tuomaala, Mari & Ahtila, Pekka, 2010. "Variables affecting energy efficiency and CO2 emissions in the steel industry," Energy Policy, Elsevier, vol. 38(5), pages 2477-2485, May.
    2. Ramírez, C.A. & Patel, M. & Blok, K., 2006. "How much energy to process one pound of meat? A comparison of energy use and specific energy consumption in the meat industry of four European countries," Energy, Elsevier, vol. 31(12), pages 2047-2063.
    3. Tanaka, Kanako, 2008. "Assessment of energy efficiency performance measures in industry and their application for policy," Energy Policy, Elsevier, vol. 36(8), pages 2877-2892, August.
    4. Phylipsen, G. J. M. & Blok, K. & Worrell, E., 1997. "International comparisons of energy efficiency-Methodologies for the manufacturing industry," Energy Policy, Elsevier, vol. 25(7-9), pages 715-725.
    5. Ramírez, C.A. & Patel, M. & Blok, K., 2006. "From fluid milk to milk powder: Energy use and energy efficiency in the European dairy industry," Energy, Elsevier, vol. 31(12), pages 1984-2004.
    6. Palamutcu, S., 2010. "Electric energy consumption in the cotton textile processing stages," Energy, Elsevier, vol. 35(7), pages 2945-2952.
    7. Xu, Tengfang & Flapper, Joris & Kramer, Klaas Jan, 2009. "Characterization of energy use and performance of global cheese processing," Energy, Elsevier, vol. 34(11), pages 1993-2000.
    8. Thollander, Patrik & Mardan, Nawzad & Karlsson, Magnus, 2009. "Optimization as investment decision support in a Swedish medium-sized iron foundry - A move beyond traditional energy auditing," Applied Energy, Elsevier, vol. 86(4), pages 433-440, April.
    9. Gielen, Dolf & Taylor, Peter, 2009. "Indicators for industrial energy efficiency in India," Energy, Elsevier, vol. 34(8), pages 962-969.
    10. Patterson, Murray G, 1996. "What is energy efficiency? : Concepts, indicators and methodological issues," Energy Policy, Elsevier, vol. 24(5), pages 377-390, May.
    11. Salta, Myrsine & Polatidis, Heracles & Haralambopoulos, Dias, 2009. "Energy use in the Greek manufacturing sector: A methodological framework based on physical indicators with aggregation and decomposition analysis," Energy, Elsevier, vol. 34(1), pages 90-111.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dhayaneswaran, Y. & Ashok Kumar, L., 2014. "A study on current characteristics of induction motor while operating at its base frequency in textile industry," Energy, Elsevier, vol. 74(C), pages 340-345.
    2. Alessandro Franco & Lorenzo Miserocchi & Daniele Testi, 2023. "Energy Indicators for Enabling Energy Transition in Industry," Energies, MDPI, vol. 16(2), pages 1-18, January.
    3. Bhadbhade, Navdeep & Yilmaz, Selin & Zuberi, Jibran S. & Eichhammer, Wolfgang & Patel, Martin K., 2020. "The evolution of energy efficiency in Switzerland in the period 2000–2016," Energy, Elsevier, vol. 191(C).
    4. Peng, Lihong & Zhang, Yiting & Wang, Yejun & Zeng, Xiaoling & Peng, Najun & Yu, Ang, 2015. "Energy efficiency and influencing factor analysis in the overall Chinese textile industry," Energy, Elsevier, vol. 93(P1), pages 1222-1229.
    5. Karakaya, Ahmet & Özilgen, Mustafa, 2011. "Energy utilization and carbon dioxide emission in the fresh, paste, whole-peeled, diced, and juiced tomato production processes," Energy, Elsevier, vol. 36(8), pages 5101-5110.
    6. Ang, B.W. & Xu, X.Y., 2013. "Tracking industrial energy efficiency trends using index decomposition analysis," Energy Economics, Elsevier, vol. 40(C), pages 1014-1021.
    7. Palamutcu, S., 2010. "Electric energy consumption in the cotton textile processing stages," Energy, Elsevier, vol. 35(7), pages 2945-2952.
    8. Nunes, J. & Silva, Pedro D. & Andrade, L.P. & Gaspar, Pedro D., 2016. "Key points on the energy sustainable development of the food industry – Case study of the Portuguese sausages industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 393-411.
    9. Özilgen, Mustafa & Sorgüven, Esra, 2011. "Energy and exergy utilization, and carbon dioxide emission in vegetable oil production," Energy, Elsevier, vol. 36(10), pages 5954-5967.
    10. Lundgren, Tommy & Marklund, Per-Olov & Zhang, Shanshan, 2016. "Industrial energy demand and energy efficiency – Evidence from Sweden," Resource and Energy Economics, Elsevier, vol. 43(C), pages 130-152.
    11. Flues, Florens & Rübbelke, Dirk & Vögele, Stefan, 2013. "Energy Efficiency and Industrial Output: The Case of the Iron and Steel Industry," Energy: Resources and Markets 162379, Fondazione Eni Enrico Mattei (FEEM).
    12. Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Tracking European Union CO2 emissions through LMDI (logarithmic-mean Divisia index) decomposition. The activity revaluation approach," Energy, Elsevier, vol. 73(C), pages 741-750.
    13. Perroni, Marcos G. & Gouvea da Costa, Sergio E. & Pinheiro de Lima, Edson & Vieira da Silva, Wesley & Tortato, Ubiratã, 2018. "Measuring energy performance: A process based approach," Applied Energy, Elsevier, vol. 222(C), pages 540-553.
    14. Perroni, Marcos G. & Gouvea da Costa, Sergio E. & Pinheiro de Lima, Edson & Vieira da Silva, Wesley, 2017. "The relationship between enterprise efficiency in resource use and energy efficiency practices adoption," International Journal of Production Economics, Elsevier, vol. 190(C), pages 108-119.
    15. Tanaka, Kanako, 2012. "A comparison study of EU and Japan methods to assess CO2 emission reduction and energy saving in the iron and steel industry," Energy Policy, Elsevier, vol. 51(C), pages 578-585.
    16. Al-Mansour, Fouad, 2011. "Energy efficiency trends and policy in Slovenia," Energy, Elsevier, vol. 36(4), pages 1868-1877.
    17. Karbuz, Sohbet, 1998. "Achieving accurate international comparisons of manufacturing energy use data," Energy Policy, Elsevier, vol. 26(12), pages 973-979, October.
    18. Bartłomiej Bajan & Aldona Mrówczyńska-Kamińska & Walenty Poczta, 2020. "Economic Energy Efficiency of Food Production Systems," Energies, MDPI, vol. 13(21), pages 1-16, November.
    19. Bei He & Xiaoyun Du & Junkang Li & Dan Chen, 2023. "A Effectiveness-and Efficiency-Based Improved Approach for Measuring Ecological Well-Being Performance in China," IJERPH, MDPI, vol. 20(3), pages 1-29, January.
    20. Wu, Kaiyao & Shi, Jiyuan & Yang, Tinggan, 2017. "Has energy efficiency performance improved in China?—non-energy sectors evidence from sequenced hybrid energy use tables," Energy Economics, Elsevier, vol. 67(C), pages 169-181.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:38:y:2012:i:1:p:331-345. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.