IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v307y2022ics0306261921014756.html
   My bibliography  Save this article

Variance-based global sensitivity analysis of a hybrid thermoelectric generator fuzzy system

Author

Listed:
  • Zhang, Feng
  • Wang, Xinhe
  • Hou, Xinting
  • Han, Cheng
  • Wu, Mingying
  • Liu, Zhongbing

Abstract

In this paper, Hybrid thermoelectric generators (HTEG) model was established based on nonequilibrium thermodynamics and Newton's heat transfer law. Fuzzy theory was used to describe the decision-making and cognitive uncertainty of HTEG design variables in working environment and material. The influence of the fluctuation of design parameters on the output performance is studied using a variance-based global sensitivity analysis. Taking a sampling sample N = 10,000, the main and total Global sensitivity indices of design parameters are calculated, and the sensitivity ranking are obtained. In addition, the analysis was applied to contact effects and the number of serial and parallel components on the sensitivity of the output to the uncertainty of the design variables. The results show: the heat and cold source temperature, load resistance and Seebeck coefficient had a greater impact on the output power and the impact on the conversion efficiency mainly came from the heat and cold source temperature, load resistance and thermal resistance of the thermoelectric module. The contact effects and the number of thermoelectric components connected in series and parallel exerted a certain influence on the uncertainty of output response. The results can be used to guide the performance analysis and parameter optimization of HTEG in application.

Suggested Citation

  • Zhang, Feng & Wang, Xinhe & Hou, Xinting & Han, Cheng & Wu, Mingying & Liu, Zhongbing, 2022. "Variance-based global sensitivity analysis of a hybrid thermoelectric generator fuzzy system," Applied Energy, Elsevier, vol. 307(C).
  • Handle: RePEc:eee:appene:v:307:y:2022:i:c:s0306261921014756
    DOI: 10.1016/j.apenergy.2021.118208
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921014756
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.118208?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shamshirband, Shahaboddin & Petković, Dalibor & Amini, Amineh & Anuar, Nor Badrul & Nikolić, Vlastimir & Ćojbašić, Žarko & Mat Kiah, Miss Laiha & Gani, Abdullah, 2014. "Support vector regression methodology for wind turbine reaction torque prediction with power-split hydrostatic continuous variable transmission," Energy, Elsevier, vol. 67(C), pages 623-630.
    2. Chambers, Jonathan & Zuberi, M.J.S. & Streicher, K.N. & Patel, Martin K., 2021. "Geospatial global sensitivity analysis of a heat energy service decarbonisation model of the building stock," Applied Energy, Elsevier, vol. 302(C).
    3. Carta, José A. & Díaz, Santiago & Castañeda, Alberto, 2020. "A global sensitivity analysis method applied to wind farm power output estimation models," Applied Energy, Elsevier, vol. 280(C).
    4. Ezzitouni, S. & Fernández-Yáñez, P. & Sánchez, L. & Armas, O., 2020. "Global energy balance in a diesel engine with a thermoelectric generator," Applied Energy, Elsevier, vol. 269(C).
    5. Petković, Dalibor & Barjaktarovic, Miljana & Milošević, Slaviša & Denić, Nebojša & Spasić, Boban & Stojanović, Jelena & Milovancevic, Milos, 2021. "Neuro fuzzy estimation of the most influential parameters for Kusum biodiesel performance," Energy, Elsevier, vol. 229(C).
    6. Luo, Ding & Sun, Zeyu & Wang, Ruochen, 2022. "Performance investigation of a thermoelectric generator system applied in automobile exhaust waste heat recovery," Energy, Elsevier, vol. 238(PB).
    7. Ouyang, Zhongliang & Li, Dawen, 2018. "Design of segmented high-performance thermoelectric generators with cost in consideration," Applied Energy, Elsevier, vol. 221(C), pages 112-121.
    8. Cui, Y.J. & Wang, B.L. & Wang, K.F., 2021. "Energy conversion performance optimization and strength evaluation of a wearable thermoelectric generator made of a thermoelectric layer on a flexible substrate," Energy, Elsevier, vol. 229(C).
    9. Papaioannou, Iason & Straub, Daniel, 2021. "Variance-based reliability sensitivity analysis and the FORM α-factors," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    10. Wu, Yaling & Liu, Zhongbing & Liu, Jiangyang & Xiao, Hui & Liu, Ruimiao & Zhang, Ling, 2022. "Optimal battery capacity of grid-connected PV-battery systems considering battery degradation," Renewable Energy, Elsevier, vol. 181(C), pages 10-23.
    11. Liu, Zhongbing & Zhang, Yelin & Zhang, Ling & Luo, Yongqiang & Wu, Zhenghong & Wu, Jing & Yin, Yingde & Hou, Guoqing, 2018. "Modeling and simulation of a photovoltaic thermal-compound thermoelectric ventilator system," Applied Energy, Elsevier, vol. 228(C), pages 1887-1900.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chuan Qin & Yuqing Jin & Meng Tian & Ping Ju & Shun Zhou, 2023. "Comparative Study of Global Sensitivity Analysis and Local Sensitivity Analysis in Power System Parameter Identification," Energies, MDPI, vol. 16(16), pages 1-21, August.
    2. Zhang, Feng & Wang, Xinhe & Wang, Weiyue & Zhang, Jiajia & Du, Ruijie & Li, Bingqiang & Liu, Wei, 2023. "Uncertainty analysis of photovoltaic cells to determine probability of functional failure," Applied Energy, Elsevier, vol. 332(C).
    3. Liu, Jiangfeng & Zhang, Qi & Li, Hailong & Chen, Siyuan & Teng, Fei, 2022. "Investment decision on carbon capture and utilization (CCU) technologies—A real option model based on technology learning effect," Applied Energy, Elsevier, vol. 322(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Jie & Wang, Ruochen & Ding, Renkai & Luo, Ding, 2024. "Matching design and numerical optimization of automotive thermoelectric generator system applied to range-extended electric vehicle," Applied Energy, Elsevier, vol. 370(C).
    2. Liang, Yushi & Wu, Chunbing & Ji, Xiaodong & Zhang, Mulan & Li, Yiran & He, Jianjun & Qin, Zhiheng, 2022. "Estimation of the influences of spatiotemporal variations in air density on wind energy assessment in China based on deep neural network," Energy, Elsevier, vol. 239(PC).
    3. Sijing Zhu & Zheng Fan & Baoquan Feng & Runze Shi & Zexin Jiang & Ying Peng & Jie Gao & Lei Miao & Kunihito Koumoto, 2022. "Review on Wearable Thermoelectric Generators: From Devices to Applications," Energies, MDPI, vol. 15(9), pages 1-27, May.
    4. Liu, Ruimiao & Liu, Zhongbing & Xiong, Wei & Zhang, Ling & Zhao, Chengliang & Yin, Yingde, 2024. "Performance simulation and optimization of building façade photovoltaic systems under different urban building layouts," Energy, Elsevier, vol. 288(C).
    5. Li, Hai & Zheng, Peng & Zhang, Tingsheng & Zou, Yingquan & Pan, Yajia & Zhang, Zutao & Azam, Ali, 2021. "A high-efficiency energy regenerative shock absorber for powering auxiliary devices of new energy driverless buses," Applied Energy, Elsevier, vol. 295(C).
    6. Ge, Ya & Lin, Yousheng & He, Qing & Wang, Wenhao & Chen, Jiechao & Huang, Si-Min, 2021. "Geometric optimization of segmented thermoelectric generators for waste heat recovery systems using genetic algorithm," Energy, Elsevier, vol. 233(C).
    7. Chen, Jie & Wang, Ruochen & Ding, Renkai & Luo, Ding, 2024. "Comprehensive comparison and applicable range of separating and coupling numerical models of thermoelectric generation device for waste heat recovery," Energy, Elsevier, vol. 304(C).
    8. Luo, Ding & Yan, Yuying & Li, Ying & Wang, Ruochen & Cheng, Shan & Yang, Xuelin & Ji, Dongxu, 2023. "A hybrid transient CFD-thermoelectric numerical model for automobile thermoelectric generator systems," Applied Energy, Elsevier, vol. 332(C).
    9. Calise, Francesco & Cappiello, Francesco Liberato & Cimmino, Luca & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2023. "Renewable smart energy network: A thermoeconomic comparison between conventional lithium-ion batteries and reversible solid oxide fuel cells," Renewable Energy, Elsevier, vol. 214(C), pages 74-95.
    10. Mingzhu Tang & Wei Chen & Qi Zhao & Huawei Wu & Wen Long & Bin Huang & Lida Liao & Kang Zhang, 2019. "Development of an SVR Model for the Fault Diagnosis of Large-Scale Doubly-Fed Wind Turbines Using SCADA Data," Energies, MDPI, vol. 12(17), pages 1-15, September.
    11. Zhang, Aibing & Pang, Dandan & Wang, Baolin & Wang, Ji, 2023. "Dynamic responses of wearable thermoelectric generators used for skin waste heat harvesting," Energy, Elsevier, vol. 262(PB).
    12. Jung, WoongHee & Taflanidis, Alexandros A., 2023. "Efficient global sensitivity analysis for high-dimensional outputs combining data-driven probability models and dimensionality reduction," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    13. Zhang, Yelin & Liu, Zhongbing & Wang, Pengcheng, 2020. "Evaluation of a stand-alone photovoltaic/thermal integrated thermoelectric water heating system," Renewable Energy, Elsevier, vol. 162(C), pages 1533-1553.
    14. Sun, Zeyu & Luo, Ding & Wang, Ruochen & Li, Ying & Yan, Yuying & Cheng, Ziming & Chen, Jie, 2022. "Evaluation of energy recovery potential of solar thermoelectric generators using a three-dimensional transient numerical model," Energy, Elsevier, vol. 256(C).
    15. Ramedani, Zeynab & Omid, Mahmoud & Keyhani, Alireza & Shamshirband, Shahaboddin & Khoshnevisan, Benyamin, 2014. "Potential of radial basis function based support vector regression for global solar radiation prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1005-1011.
    16. Qi Xu & Shihao Zhang & Saffa Riffat, 2022. "Ecopump: a novel thermoelectric heat pump/heat recovery ventilator system for domestic building applications [A 3-field earth-heat-exchange system for a school building in Imola, Italy: monitoring ," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 563-570.
    17. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Yu, Jinghua & Xu, Xinhua & Su, Xiaosong, 2020. "Towards net zero energy building: The application potential and adaptability of photovoltaic-thermoelectric-battery wall system," Applied Energy, Elsevier, vol. 258(C).
    18. Yusuf, Aminu & Ballikaya, Sedat, 2022. "Electrical, thermomechanical and cost analyses of a low-cost thermoelectric generator," Energy, Elsevier, vol. 241(C).
    19. Alaa A. Zaky & Mohamed N. Ibrahim & Ibrahim B. M. Taha & Bedir Yousif & Peter Sergeant & Evangelos Hristoforou & Polycarpos Falaras, 2022. "Perovskite Solar Cells and Thermoelectric Generator Hybrid Array Feeding a Synchronous Reluctance Motor for an Efficient Water Pumping System," Mathematics, MDPI, vol. 10(14), pages 1-18, July.
    20. Chen, Jiangfan & Fang, Zheng & Azam, Ali & Wu, Xiaoping & Zhang, Zutao & Lu, Linhai & Li, Dongyang, 2023. "An energy self-circulation system based on the wearable thermoelectric harvester for ART driver monitoring," Energy, Elsevier, vol. 262(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:307:y:2022:i:c:s0306261921014756. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.