IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v280y2020ics0306261920314203.html
   My bibliography  Save this article

A global sensitivity analysis method applied to wind farm power output estimation models

Author

Listed:
  • Carta, José A.
  • Díaz, Santiago
  • Castañeda, Alberto

Abstract

This paper proposes a global sensitivity analysis method applied to wind farm power output estimation models. The relevance of a global sensibility analysis is that it allows quantification of the contribution of the uncertainty of each input variable of the estimation model to the uncertainty of the response of the model. Measures of sensitivity based on Sobol' indices have been used in the field of energy. Sobol’ indices are constructed based on the assumption that the model input variables are statistically independent. The method proposed in this paper uses Shapley effects and a regular vine copula to take into account the probable dependency among the input variables of the models. The model used as case study is fed with sixteen meteorological variables and six operational variables. The following are some of the most important results obtained in the case study: a) Regular vine copulas were more suitable than the drawable vine and canonical vine subclass copulas to simulate the structure of dependency between the random input variables of the used wind farm power output estimation model; b) the Shapley effects were able to overcome the difficulty of interpretation presented by the Sobol' indices with respect to correlations among the input variables of the wind farm power output estimation model. In the case study, the wind speed, active power set-point and turbulence intensity variables explained 98.58% of the variance of the response of the model. The wind direction, nacelle orientation and air density variables only explained 1.42% of that variance.

Suggested Citation

  • Carta, José A. & Díaz, Santiago & Castañeda, Alberto, 2020. "A global sensitivity analysis method applied to wind farm power output estimation models," Applied Energy, Elsevier, vol. 280(C).
  • Handle: RePEc:eee:appene:v:280:y:2020:i:c:s0306261920314203
    DOI: 10.1016/j.apenergy.2020.115968
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920314203
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115968?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hübler, Clemens & Gebhardt, Cristian Guillermo & Rolfes, Raimund, 2017. "Hierarchical four-step global sensitivity analysis of offshore wind turbines based on aeroelastic time domain simulations," Renewable Energy, Elsevier, vol. 111(C), pages 878-891.
    2. Genest, Christian & Rémillard, Bruno & Beaudoin, David, 2009. "Goodness-of-fit tests for copulas: A review and a power study," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 199-213, April.
    3. Aas, Kjersti & Czado, Claudia & Frigessi, Arnoldo & Bakken, Henrik, 2009. "Pair-copula constructions of multiple dependence," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 182-198, April.
    4. Jordan, Matthias & Millinger, Markus & Thrän, Daniela, 2020. "Robust bioenergy technologies for the German heat transition: A novel approach combining optimization modeling with Sobol’ sensitivity analysis," Applied Energy, Elsevier, vol. 262(C).
    5. Díaz, Santiago & Carta, José A. & Castañeda, Alberto, 2020. "Influence of the variation of meteorological and operational parameters on estimation of the power output of a wind farm with active power control," Renewable Energy, Elsevier, vol. 159(C), pages 812-826.
    6. Marvuglia, Antonino & Messineo, Antonio, 2012. "Monitoring of wind farms’ power curves using machine learning techniques," Applied Energy, Elsevier, vol. 98(C), pages 574-583.
    7. Shao, Qian & Gao, Enlai & Mara, Thierry & Hu, Heng & Liu, Tong & Makradi, Ahmed, 2020. "Global sensitivity analysis of solid oxide fuel cells with Bayesian sparse polynomial chaos expansions," Applied Energy, Elsevier, vol. 260(C).
    8. Pang, Zhihong & O'Neill, Zheng, 2018. "Uncertainty quantification and sensitivity analysis of the domestic hot water usage in hotels," Applied Energy, Elsevier, vol. 232(C), pages 424-442.
    9. Niemierko, Rochus & Töppel, Jannick & Tränkler, Timm, 2019. "A D-vine copula quantile regression approach for the prediction of residential heating energy consumption based on historical data," Applied Energy, Elsevier, vol. 233, pages 691-708.
    10. Agüera-Pérez, Agustín & Palomares-Salas, José Carlos & González de la Rosa, Juan José & Florencias-Oliveros, Olivia, 2018. "Weather forecasts for microgrid energy management: Review, discussion and recommendations," Applied Energy, Elsevier, vol. 228(C), pages 265-278.
    11. Andrew J. Patton, 2006. "Estimation of multivariate models for time series of possibly different lengths," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(2), pages 147-173, March.
    12. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    13. Dißmann, J. & Brechmann, E.C. & Czado, C. & Kurowicka, D., 2013. "Selecting and estimating regular vine copulae and application to financial returns," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 52-69.
    14. Li, M.S. & Lin, Z.J. & Ji, T.Y. & Wu, Q.H., 2018. "Risk constrained stochastic economic dispatch considering dependence of multiple wind farms using pair-copula," Applied Energy, Elsevier, vol. 226(C), pages 967-978.
    15. Dai, Juchuan & Tan, Yayi & Shen, Xiangbin, 2019. "Investigation of energy output in mountain wind farm using multiple-units SCADA data," Applied Energy, Elsevier, vol. 239(C), pages 225-238.
    16. Carta, José A. & Cabrera, Pedro & Matías, José M. & Castellano, Fernando, 2015. "Comparison of feature selection methods using ANNs in MCP-wind speed methods. A case study," Applied Energy, Elsevier, vol. 158(C), pages 490-507.
    17. Bossavy, Arthur & Girard, Robin & Kariniotakis, Georges, 2016. "Sensitivity analysis in the technical potential assessment of onshore wind and ground solar photovoltaic power resources at regional scale," Applied Energy, Elsevier, vol. 182(C), pages 145-153.
    18. Sun, Mingyang & Cremer, Jochen & Strbac, Goran, 2018. "A novel data-driven scenario generation framework for transmission expansion planning with high renewable energy penetration," Applied Energy, Elsevier, vol. 228(C), pages 546-555.
    19. Hu, Hao & Lin, Tao & Wang, Shaowen & Rodriguez, Luis F., 2017. "A cyberGIS approach to uncertainty and sensitivity analysis in biomass supply chain optimization," Applied Energy, Elsevier, vol. 203(C), pages 26-40.
    20. Carta, J.A. & Ramírez, P. & Velázquez, S., 2009. "A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 933-955, June.
    21. Marco Ratto, 2008. "Analysing DSGE Models with Global Sensitivity Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 31(2), pages 115-139, March.
    22. Guerra, Omar J. & Tejada, Diego A. & Reklaitis, Gintaras V., 2019. "Climate change impacts and adaptation strategies for a hydro-dominated power system via stochastic optimization," Applied Energy, Elsevier, vol. 233, pages 584-598.
    23. G. A. Croes, 1958. "A Method for Solving Traveling-Salesman Problems," Operations Research, INFORMS, vol. 6(6), pages 791-812, December.
    24. Velarde, Joey & Kramhøft, Claus & Sørensen, John Dalsgaard, 2019. "Global sensitivity analysis of offshore wind turbine foundation fatigue loads," Renewable Energy, Elsevier, vol. 140(C), pages 177-189.
    25. Tim Bedford & Alireza Daneshkhah & Kevin J. Wilson, 2016. "Approximate Uncertainty Modeling in Risk Analysis with Vine Copulas," Risk Analysis, John Wiley & Sons, vol. 36(4), pages 792-815, April.
    26. Silva, R. & Pérez, M. & Berenguel, M. & Valenzuela, L. & Zarza, E., 2014. "Uncertainty and global sensitivity analysis in the design of parabolic-trough direct steam generation plants for process heat applications," Applied Energy, Elsevier, vol. 121(C), pages 233-244.
    27. Schepsmeier, Ulf, 2015. "Efficient information based goodness-of-fit tests for vine copula models with fixed margins: A comprehensive review," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 34-52.
    28. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "Uncertainty and global sensitivity analysis for the optimal design of distributed energy systems," Applied Energy, Elsevier, vol. 214(C), pages 219-238.
    29. Xiao, Qing & Zhou, Shaowu, 2018. "Probabilistic power flow computation considering correlated wind speeds," Applied Energy, Elsevier, vol. 231(C), pages 677-685.
    30. Sergio Velázquez Medina & José A. Carta & Ulises Portero Ajenjo, 2019. "Performance Sensitivity of a Wind Farm Power Curve Model to Different Signals of the Input Layer of ANNs: Case Studies in the Canary Islands," Complexity, Hindawi, vol. 2019, pages 1-11, March.
    31. Saltelli A. & Tarantola S., 2002. "On the Relative Importance of Input Factors in Mathematical Models: Safety Assessment for Nuclear Waste Disposal," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 702-709, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chuan Qin & Yuqing Jin & Meng Tian & Ping Ju & Shun Zhou, 2023. "Comparative Study of Global Sensitivity Analysis and Local Sensitivity Analysis in Power System Parameter Identification," Energies, MDPI, vol. 16(16), pages 1-21, August.
    2. Zhang, Feng & Wang, Xinhe & Hou, Xinting & Han, Cheng & Wu, Mingying & Liu, Zhongbing, 2022. "Variance-based global sensitivity analysis of a hybrid thermoelectric generator fuzzy system," Applied Energy, Elsevier, vol. 307(C).
    3. Carta, José A. & Cabrera, Pedro, 2021. "Optimal sizing of stand-alone wind-powered seawater reverse osmosis plants without use of massive energy storage," Applied Energy, Elsevier, vol. 304(C).
    4. Liang, Yushi & Wu, Chunbing & Ji, Xiaodong & Zhang, Mulan & Li, Yiran & He, Jianjun & Qin, Zhiheng, 2022. "Estimation of the influences of spatiotemporal variations in air density on wind energy assessment in China based on deep neural network," Energy, Elsevier, vol. 239(PC).
    5. Wang, Rui & Li, Peng & Yu, Hao & Ji, Haoran & Xi, Wei & Wang, Chengshan, 2023. "Identification of critical uncertain factors of distribution networks with high penetration of photovoltaics and electric vehicles," Applied Energy, Elsevier, vol. 329(C).
    6. Allahyarzadeh-Bidgoli, Ali & Yanagihara, Jurandir Itizo, 2023. "Energy efficiency, sustainability, and operating cost optimization of an FPSO with CCUS: An innovation in CO2 compression and injection systems," Energy, Elsevier, vol. 267(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koliai, Lyes, 2016. "Extreme risk modeling: An EVT–pair-copulas approach for financial stress tests," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 1-22.
    2. Xu, Qifa & Fan, Zhenhua & Jia, Weiyin & Jiang, Cuixia, 2020. "Fault detection of wind turbines via multivariate process monitoring based on vine copulas," Renewable Energy, Elsevier, vol. 161(C), pages 939-955.
    3. Huang, Wanling & Mollick, André Varella & Nguyen, Khoa Huu, 2016. "U.S. stock markets and the role of real interest rates," The Quarterly Review of Economics and Finance, Elsevier, vol. 59(C), pages 231-242.
    4. Maziar Sahamkhadam & Andreas Stephan, 2019. "Portfolio optimization based on forecasting models using vine copulas: An empirical assessment for the financial crisis," Papers 1912.10328, arXiv.org.
    5. Eling, Martin & Jung, Kwangmin, 2018. "Copula approaches for modeling cross-sectional dependence of data breach losses," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 167-180.
    6. Cyprian Omari & Peter Mwita & Anthony Waititu, 2019. "Conditional Dependence Modelling with Regular Vine Copulas," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 8(1), pages 1-5.
    7. Díaz, Santiago & Carta, José A. & Castañeda, Alberto, 2020. "Influence of the variation of meteorological and operational parameters on estimation of the power output of a wind farm with active power control," Renewable Energy, Elsevier, vol. 159(C), pages 812-826.
    8. Kjersti Aas, 2016. "Pair-Copula Constructions for Financial Applications: A Review," Econometrics, MDPI, vol. 4(4), pages 1-15, October.
    9. Song, Yupeng & Basu, Biswajit & Zhang, Zili & Sørensen, John Dalsgaard & Li, Jie & Chen, Jianbing, 2021. "Dynamic reliability analysis of a floating offshore wind turbine under wind-wave joint excitations via probability density evolution method," Renewable Energy, Elsevier, vol. 168(C), pages 991-1014.
    10. Reboredo, Juan C. & Ugolini, Andrea, 2018. "The impact of energy prices on clean energy stock prices. A multivariate quantile dependence approach," Energy Economics, Elsevier, vol. 76(C), pages 136-152.
    11. Jean-David Fermanian, 2012. "An overview of the goodness-of-fit test problem for copulas," Papers 1211.4416, arXiv.org.
    12. Dalla Valle, Luciana & De Giuli, Maria Elena & Tarantola, Claudia & Manelli, Claudio, 2016. "Default probability estimation via pair copula constructions," European Journal of Operational Research, Elsevier, vol. 249(1), pages 298-311.
    13. Saha, Kunal, 2018. "An investigation into the dependence structure of major cryptocurrencies," EconStor Preprints 181878, ZBW - Leibniz Information Centre for Economics.
    14. Jose Arreola Hernandez & Shawkat Hammoudeh & Duc Khuong Nguyen & Mazin A. M. Al Janabi & Juan Carlos Reboredo, 2017. "Global financial crisis and dependence risk analysis of sector portfolios: a vine copula approach," Applied Economics, Taylor & Francis Journals, vol. 49(25), pages 2409-2427, May.
    15. Gregor Weiß, 2013. "Copula-GARCH versus dynamic conditional correlation: an empirical study on VaR and ES forecasting accuracy," Review of Quantitative Finance and Accounting, Springer, vol. 41(2), pages 179-202, August.
    16. Wanling Huang & André Varella Mollick & Khoa Huu Nguyen, 2017. "Dynamic responses and tail-dependence among commodities, the US real interest rate and the dollar," Empirical Economics, Springer, vol. 53(3), pages 959-997, November.
    17. Siburg, Karl Friedrich & Stoimenov, Pavel & Weiß, Gregor N.F., 2015. "Forecasting portfolio-Value-at-Risk with nonparametric lower tail dependence estimates," Journal of Banking & Finance, Elsevier, vol. 54(C), pages 129-140.
    18. Hobæk Haff, Ingrid & Aas, Kjersti & Frigessi, Arnoldo & Lacal, Virginia, 2016. "Structure learning in Bayesian Networks using regular vines," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 186-208.
    19. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    20. Karoline Bax & Ozge Sahin & Claudia Czado & Sandra Paterlini, 2021. "ESG, Risk, and (Tail) Dependence," Papers 2105.07248, arXiv.org, revised Nov 2021.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:280:y:2020:i:c:s0306261920314203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.