IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i6p4985-d1094085.html
   My bibliography  Save this article

Impact of Heat Pump and Cogeneration Integration on Power Distribution Grids Based on Transition Scenarios for Heating in Urban Areas

Author

Listed:
  • Marten Fesefeldt

    (Institute of Energy and Electrical Systems (IESE), School of Engineering and Management Vaud, HES-SO University of Applied Sciences and Arts Western Switzerland, Route de Cheseaux 1, 1400 Yverdon-les-Bains, Switzerland)

  • Massimiliano Capezzali

    (Institute of Energy and Electrical Systems (IESE), School of Engineering and Management Vaud, HES-SO University of Applied Sciences and Arts Western Switzerland, Route de Cheseaux 1, 1400 Yverdon-les-Bains, Switzerland)

  • Mokhtar Bozorg

    (Institute of Energy and Electrical Systems (IESE), School of Engineering and Management Vaud, HES-SO University of Applied Sciences and Arts Western Switzerland, Route de Cheseaux 1, 1400 Yverdon-les-Bains, Switzerland)

  • Riina Karjalainen

    (Institute of Energy and Electrical Systems (IESE), School of Engineering and Management Vaud, HES-SO University of Applied Sciences and Arts Western Switzerland, Route de Cheseaux 1, 1400 Yverdon-les-Bains, Switzerland)

Abstract

Electrification of final use sectors such as heating and mobility is often proposed as an effective pathway towards decarbonization of urban areas. In this context, power-driven heat pumps (HP) are usually strongly fostered as alternatives to fossil-burning boilers in municipal planning processes. In continental climates, this leads to substantially increased electricity demand in winter months that, in turn may lead to stress situations on local power distribution grids. Hence, in parallel to the massive implementation of electric HP, strategies must be put in place to ensure the grid stability and operational security, notably in terms of voltage levels, as well as transformer and line’s capacity limits. In this paper, three such strategies are highlighted within the specific situation of a mid-sized Swiss city, potentially representative of many continental, central Europe urban zones as a test-case. The hourly-based power flow simulations of the medium- and low-voltage distribution grids show the impact of various future scenarios, inspired from typical territorial energy planning processes, implying various degrees of heat pumps penetration. The first strategy relies on the implementation of decentralized combined heat and power (CHP) units, fed by the existing natural gas network and is shown to provide an effective pathway to accommodate heat pump electricity demand on urban power distribution grids. Two alternative solutions based on grid reinforcements and controlled usage of reactive power from photovoltaic (PV) inverters are additionally considered to ensure security constraints of grid operation and compared with the scenario relying on CHP deployment.

Suggested Citation

  • Marten Fesefeldt & Massimiliano Capezzali & Mokhtar Bozorg & Riina Karjalainen, 2023. "Impact of Heat Pump and Cogeneration Integration on Power Distribution Grids Based on Transition Scenarios for Heating in Urban Areas," Sustainability, MDPI, vol. 15(6), pages 1-15, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:4985-:d:1094085
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/6/4985/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/6/4985/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Park, BeomJun & Hur, Jin, 2018. "Spatial prediction of renewable energy resources for reinforcing and expanding power grids," Energy, Elsevier, vol. 164(C), pages 757-772.
    2. Fesefeldt, M. & Capezzali, M. & Bozorg, M. & de Lapparent, M., 2021. "Evaluation of future scenarios for gas distribution networks under hypothesis of decreasing heat demand in urban zones," Energy, Elsevier, vol. 231(C).
    3. Wang, Licheng & Yan, Ruifeng & Saha, Tapan Kumar, 2019. "Voltage regulation challenges with unbalanced PV integration in low voltage distribution systems and the corresponding solution," Applied Energy, Elsevier, vol. 256(C).
    4. Martina Crimmann & Reinhard Madlener, 2021. "Assessing Local Power Generation Potentials of Photovoltaics, Engine Cogeneration, and Heat Pumps: The Case of a Major Swiss City," Energies, MDPI, vol. 14(17), pages 1-26, September.
    5. Rüdisüli, Martin & Romano, Elliot & Eggimann, Sven & Patel, Martin K., 2022. "Decarbonization strategies for Switzerland considering embedded greenhouse gas emissions in electricity imports," Energy Policy, Elsevier, vol. 162(C).
    6. Damian Sal y Rosas & Daniel Chavez & David Frey & Jean-Paul Ferrieux, 2022. "Single-Stage Isolated and Bidirectional Three-Phase Series-Resonant AC–DC Converter: Modulation for Active and Reactive Power Control," Energies, MDPI, vol. 15(21), pages 1-29, October.
    7. Yuchen Yang & Kavan Javanroodi & Vahid M. Nik, 2022. "Climate Change and Renewable Energy Generation in Europe—Long-Term Impact Assessment on Solar and Wind Energy Using High-Resolution Future Climate Data and Considering Climate Uncertainties," Energies, MDPI, vol. 15(1), pages 1-19, January.
    8. Brown, T. & Schlachtberger, D. & Kies, A. & Schramm, S. & Greiner, M., 2018. "Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system," Energy, Elsevier, vol. 160(C), pages 720-739.
    9. Jolando M. Kisse & Martin Braun & Simon Letzgus & Tanja M. Kneiske, 2020. "A GIS-Based Planning Approach for Urban Power and Natural Gas Distribution Grids with Different Heat Pump Scenarios," Energies, MDPI, vol. 13(16), pages 1-31, August.
    10. Merai, M. & Naouar, M.W. & Slama-Belkhodja, I. & Monmasson, E., 2019. "Grid connected converters as reactive power ancillary service providers: Technical analysis for minimum required DC-link voltage," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 158(C), pages 344-354.
    11. Martin Rüdisüli & Sinan L. Teske & Urs Elber, 2019. "Impacts of an Increased Substitution of Fossil Energy Carriers with Electricity-Based Technologies on the Swiss Electricity System," Energies, MDPI, vol. 12(12), pages 1-38, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ferrada, Francisco & Babonneau, Frederic & Homem-de-Mello, Tito & Jalil-Vega, Francisca, 2023. "The role of hydrogen for deep decarbonization of energy systems: A Chilean case study," Energy Policy, Elsevier, vol. 177(C).
    2. Walch, Alina & Rüdisüli, Martin, 2023. "Strategic PV expansion and its impact on regional electricity self-sufficiency: Case study of Switzerland," Applied Energy, Elsevier, vol. 346(C).
    3. Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    4. Rüdisüli, Martin & Romano, Elliot & Eggimann, Sven & Patel, Martin K., 2022. "Decarbonization strategies for Switzerland considering embedded greenhouse gas emissions in electricity imports," Energy Policy, Elsevier, vol. 162(C).
    5. Damianakis, Nikolaos & Mouli, Gautham Ram Chandra & Bauer, Pavol & Yu, Yunhe, 2023. "Assessing the grid impact of Electric Vehicles, Heat Pumps & PV generation in Dutch LV distribution grids," Applied Energy, Elsevier, vol. 352(C).
    6. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    7. Grzegorz Ślusarz & Barbara Gołębiewska & Marek Cierpiał-Wolan & Jarosław Gołębiewski & Dariusz Twaróg & Sebastian Wójcik, 2021. "Regional Diversification of Potential, Production and Efficiency of Use of Biogas and Biomass in Poland," Energies, MDPI, vol. 14(3), pages 1-20, January.
    8. A.S. Jameel Hassan & Umar Marikkar & G.W. Kasun Prabhath & Aranee Balachandran & W.G. Chaminda Bandara & Parakrama B. Ekanayake & Roshan I. Godaliyadda & Janaka B. Ekanayake, 2021. "A Sensitivity Matrix Approach Using Two-Stage Optimization for Voltage Regulation of LV Networks with High PV Penetration," Energies, MDPI, vol. 14(20), pages 1-24, October.
    9. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K., 2021. "Cooperative negawatt P2P energy trading for low-voltage distribution networks," Applied Energy, Elsevier, vol. 299(C).
    10. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
    11. Lisa Göransson & Caroline Granfeldt & Ann-Brith Strömberg, 2021. "Management of Wind Power Variations in Electricity System Investment Models," SN Operations Research Forum, Springer, vol. 2(2), pages 1-30, June.
    12. Shirizadeh, Behrang & Quirion, Philippe, 2022. "The importance of renewable gas in achieving carbon-neutrality: Insights from an energy system optimization model," Energy, Elsevier, vol. 255(C).
    13. Farah, Sleiman & Andresen, Gorm Bruun, 2024. "Investment-based optimisation of energy storage design parameters in a grid-connected hybrid renewable energy system," Applied Energy, Elsevier, vol. 355(C).
    14. Terfa, H. & Baghli, L. & Bhandari, R., 2022. "Impact of renewable energy micro-power plants on power grids over Africa," Energy, Elsevier, vol. 238(PA).
    15. Maharjan, Salish & Sampath Kumar, Dhivya & Khambadkone, Ashwin M., 2020. "Enhancing the voltage stability of distribution network during PV ramping conditions with variable speed drive loads," Applied Energy, Elsevier, vol. 264(C).
    16. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    17. Merrick, James H. & Bistline, John E.T. & Blanford, Geoffrey J., 2024. "On representation of energy storage in electricity planning models," Energy Economics, Elsevier, vol. 136(C).
    18. Arjuna Nebel & Christine Krüger & Tomke Janßen & Mathieu Saurat & Sebastian Kiefer & Karin Arnold, 2020. "Comparison of the Effects of Industrial Demand Side Management and Other Flexibilities on the Performance of the Energy System," Energies, MDPI, vol. 13(17), pages 1-20, August.
    19. Rozmysław Mieński & Przemysław Urbanek & Irena Wasiak, 2021. "Using Energy Storage Inverters of Prosumer Installations for Voltage Control in Low-Voltage Distribution Networks," Energies, MDPI, vol. 14(4), pages 1-21, February.
    20. Neumann, Fabian & Hagenmeyer, Veit & Brown, Tom, 2022. "Assessments of linear power flow and transmission loss approximations in coordinated capacity expansion problems," Applied Energy, Elsevier, vol. 314(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:4985-:d:1094085. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.