IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v304y2021ics0306261921011995.html
   My bibliography  Save this article

Multi-party stochastic energy scheduling for industrial integrated energy systems considering thermal delay and thermoelectric coupling

Author

Listed:
  • Chen, Liudong
  • Liu, Nian
  • Li, Chenchen
  • Wu, Lei
  • Chen, Yubing

Abstract

Multi-dimensional stochastic factors challenge the interactive energy scheduling of the industrial integrated energy system (IIES). Previous research focuses on either deterministic energy scheduling or individual stochastic scheduling while neglecting complicated interactions among uncertain parties, which brings the research gaps about stochastic multi-party’s interaction. In this regard, a multi-party stochastic energy scheduling approach in IIES is proposed based on the stochastic game. A decentralized decision support system is considered, and a stochastic utility model is designed for decentralized IUs with multi-dimensional stochastic factors from photovoltaic (PV) production and IIES parameters, enabling them to participate in the multi-energy scheduling with their own strategies. A stochastic game model is developed considering the thermoelectric coupling and the IUs’ interaction. The co-decision mechanism, recognizing different transfer times of electrical and thermal energy, is built based on the state transition within the game. Moreover, a distributed solution algorithm that includes the Markov decision process and iterative method is designed to address the problem of the “curse of dimensionality” arising from multiple stochastic factors. Finally, case studies with realistic data from an industrial park in Guangdong Province, China, are designed to show the effectiveness of the proposed approach, which enhances IUs’ profits by 9.4% and fits flexible load strategies and price strategies. The decentralized system can also reduce the computation time by 70.1% compared to the centralized system. Through analyzing different number of scenarios and intervals for PV generation, electrical and thermal load, the conclusion has obtained that increase the number of scenarios has a negative effect on IUs’ decision, but increase the number of load intervals contributes to more specific results and higher utility.

Suggested Citation

  • Chen, Liudong & Liu, Nian & Li, Chenchen & Wu, Lei & Chen, Yubing, 2021. "Multi-party stochastic energy scheduling for industrial integrated energy systems considering thermal delay and thermoelectric coupling," Applied Energy, Elsevier, vol. 304(C).
  • Handle: RePEc:eee:appene:v:304:y:2021:i:c:s0306261921011995
    DOI: 10.1016/j.apenergy.2021.117882
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921011995
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117882?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mallier, Lise & Hétreux, Gilles & Thery-Hétreux, Raphaele & Baudet, Philippe, 2021. "A modelling framework for energy system planning: Application to CHP plants participating in the electricity market," Energy, Elsevier, vol. 214(C).
    2. Wei, F. & Jing, Z.X. & Wu, Peter Z. & Wu, Q.H., 2017. "A Stackelberg game approach for multiple energies trading in integrated energy systems," Applied Energy, Elsevier, vol. 200(C), pages 315-329.
    3. Liu, Xuezhi & Wu, Jianzhong & Jenkins, Nick & Bagdanavicius, Audrius, 2016. "Combined analysis of electricity and heat networks," Applied Energy, Elsevier, vol. 162(C), pages 1238-1250.
    4. Haase, Patrick & Thomas, Bernd, 2021. "Test and optimization of a control algorithm for demand-oriented operation of CHP units using hardware-in-the-loop," Applied Energy, Elsevier, vol. 294(C).
    5. Sun, Peng & Teng, Yun & Chen, Zhe, 2021. "Robust coordinated optimization for multi-energy systems based on multiple thermal inertia numerical simulation and uncertainty analysis," Applied Energy, Elsevier, vol. 296(C).
    6. Kong, Xiangyu & Xiao, Jie & Liu, Dehong & Wu, Jianzhong & Wang, Chengshan & Shen, Yu, 2020. "Robust stochastic optimal dispatching method of multi-energy virtual power plant considering multiple uncertainties," Applied Energy, Elsevier, vol. 279(C).
    7. Lei, Yang & Wang, Dan & Jia, Hongjie & Li, Jiaxi & Chen, Jingcheng & Li, Jingru & Yang, Zhihong, 2021. "Multi-stage stochastic planning of regional integrated energy system based on scenario tree path optimization under long-term multiple uncertainties," Applied Energy, Elsevier, vol. 300(C).
    8. Waseem, Muhammad & Lin, Zhenzhi & Liu, Shengyuan & Zhang, Zhi & Aziz, Tarique & Khan, Danish, 2021. "Fuzzy compromised solution-based novel home appliances scheduling and demand response with optimal dispatch of distributed energy resources," Applied Energy, Elsevier, vol. 290(C).
    9. Rudberg, Martin & Waldemarsson, Martin & Lidestam, Helene, 2013. "Strategic perspectives on energy management: A case study in the process industry," Applied Energy, Elsevier, vol. 104(C), pages 487-496.
    10. Sun, Wenqiang & Wang, Qiang & Zhou, Yue & Wu, Jianzhong, 2020. "Material and energy flows of the iron and steel industry: Status quo, challenges and perspectives," Applied Energy, Elsevier, vol. 268(C).
    11. Keshtkar, Azim & Arzanpour, Siamak, 2017. "An adaptive fuzzy logic system for residential energy management in smart grid environments," Applied Energy, Elsevier, vol. 186(P1), pages 68-81.
    12. Tan, Jin & Wu, Qiuwei & Hu, Qinran & Wei, Wei & Liu, Feng, 2020. "Adaptive robust energy and reserve co-optimization of integrated electricity and heating system considering wind uncertainty," Applied Energy, Elsevier, vol. 260(C).
    13. Lu, Xinhui & Liu, Zhaoxi & Ma, Li & Wang, Lingfeng & Zhou, Kaile & Feng, Nanping, 2020. "A robust optimization approach for optimal load dispatch of community energy hub," Applied Energy, Elsevier, vol. 259(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guangdi Li & Qi Tang & Bo Hu & Min Ma, 2022. "Optimal Scheduling of Thermoelectric Coupling Energy System Considering Thermal Characteristics of DHN," Sustainability, MDPI, vol. 14(15), pages 1-20, August.
    2. Mughees, Neelam & Jaffery, Mujtaba Hussain & Mughees, Anam & Ansari, Ejaz Ahmad & Mughees, Abdullah, 2023. "Reinforcement learning-based composite differential evolution for integrated demand response scheme in industrial microgrids," Applied Energy, Elsevier, vol. 342(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Qie & Fu, Yu & Lin, Haiyang & Wennersten, Ronald, 2022. "A novel integrated stochastic programming-information gap decision theory (IGDT) approach for optimization of integrated energy systems (IESs) with multiple uncertainties," Applied Energy, Elsevier, vol. 314(C).
    2. Yang, Ting & Zhao, Liyuan & Li, Wei & Zomaya, Albert Y., 2021. "Dynamic energy dispatch strategy for integrated energy system based on improved deep reinforcement learning," Energy, Elsevier, vol. 235(C).
    3. Wang, Lixiao & Jing, Z.X. & Zheng, J.H. & Wu, Q.H. & Wei, Feng, 2018. "Decentralized optimization of coordinated electrical and thermal generations in hierarchical integrated energy systems considering competitive individuals," Energy, Elsevier, vol. 158(C), pages 607-622.
    4. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Pan, Bo & Qi, Shiqiang, 2020. "Two-stage stochastic optimal operation of integrated electricity and heat system considering reserve of flexible devices and spatial-temporal correlation of wind power," Applied Energy, Elsevier, vol. 275(C).
    5. Wang, L.X. & Zheng, J.H. & Li, M.S. & Lin, X. & Jing, Z.X. & Wu, P.Z. & Wu, Q.H. & Zhou, X.X., 2019. "Multi-time scale dynamic analysis of integrated energy systems: An individual-based model," Applied Energy, Elsevier, vol. 237(C), pages 848-861.
    6. Li, Jiaxi & Wang, Dan & Jia, Hongjie & Lei, Yang & Zhou, Tianshuo & Guo, Ying, 2022. "Mechanism analysis and unified calculation model of exergy flow distribution in regional integrated energy system," Applied Energy, Elsevier, vol. 324(C).
    7. He, Ke-Lun & Zhao, Tian & Ma, Huan & Chen, Qun, 2023. "Optimal operation of integrated power and thermal systems for flexibility improvement based on evaluation and utilization of heat storage in district heating systems," Energy, Elsevier, vol. 274(C).
    8. Jing Yu & Jicheng Liu & Yajing Wen & Xue Yu, 2023. "Economic Optimal Coordinated Dispatch of Power for Community Users Considering Shared Energy Storage and Demand Response under Blockchain," Sustainability, MDPI, vol. 15(8), pages 1-26, April.
    9. Zhang, Hanxin & Sun, Wenqiang & Li, Weidong & Ma, Guangyu, 2022. "A carbon flow tracing and carbon accounting method for exploring CO2 emissions of the iron and steel industry: An integrated material–energy–carbon hub," Applied Energy, Elsevier, vol. 309(C).
    10. Mu, Yunfei & Chen, Wanqing & Yu, Xiaodan & Jia, Hongjie & Hou, Kai & Wang, Congshan & Meng, Xianjun, 2020. "A double-layer planning method for integrated community energy systems with varying energy conversion efficiencies," Applied Energy, Elsevier, vol. 279(C).
    11. Najafi, Arsalan & Pourakbari-Kasmaei, Mahdi & Jasinski, Michal & Lehtonen, Matti & Leonowicz, Zbigniew, 2021. "A hybrid decentralized stochastic-robust model for optimal coordination of electric vehicle aggregator and energy hub entities," Applied Energy, Elsevier, vol. 304(C).
    12. Wang, Yongli & Liu, Zhen & Cai, Chengcong & Xue, Lu & Ma, Yang & Shen, Hekun & Chen, Xin & Liu, Lin, 2022. "Research on the optimization method of integrated energy system operation with multi-subject game," Energy, Elsevier, vol. 245(C).
    13. Jona Maurer & Jochen Illerhaus & Pol Jané Soneira & Sören Hohmann, 2022. "Distributed Optimization of District Heating Networks Using Optimality Condition Decomposition," Energies, MDPI, vol. 15(18), pages 1-21, September.
    14. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Lin, Zhongwei & Fang, Fang & Chen, Qun, 2021. "Optimal operation of integrated electricity and heat system: A review of modeling and solution methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    15. Navid Shirzadi & Hadise Rasoulian & Fuzhan Nasiri & Ursula Eicker, 2022. "Resilience Enhancement of an Urban Microgrid during Off-Grid Mode Operation Using Critical Load Indicators," Energies, MDPI, vol. 15(20), pages 1-15, October.
    16. Wang, Yubin & Dong, Wei & Yang, Qiang, 2022. "Multi-stage optimal energy management of multi-energy microgrid in deregulated electricity markets," Applied Energy, Elsevier, vol. 310(C).
    17. Wang, Can & Yan, Chao & Li, Gengfeng & Liu, Shiyu & Bie, Zhaohong, 2020. "Risk assessment of integrated electricity and heat system with independent energy operators based on Stackelberg game," Energy, Elsevier, vol. 198(C).
    18. Luo, Xi & Liu, Yanfeng & Feng, Pingan & Gao, Yuan & Guo, Zhenxiang, 2021. "Optimization of a solar-based integrated energy system considering interaction between generation, network, and demand side," Applied Energy, Elsevier, vol. 294(C).
    19. Li, Yuxuan & Zhang, Junli & Wu, Xiao & Shen, Jiong & Maréchal, François, 2023. "Stochastic-robust planning optimization method based on tracking-economy extreme scenario tradeoff for CCHP multi-energy system," Energy, Elsevier, vol. 283(C).
    20. Kiani-Moghaddam, Mohammad & Soltani, Mohsen N. & Kalogirou, Soteris A. & Mahian, Omid & Arabkoohsar, Ahmad, 2023. "A review of neighborhood level multi-carrier energy hubs—uncertainty and problem-solving process," Energy, Elsevier, vol. 281(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:304:y:2021:i:c:s0306261921011995. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.