IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v198y2020ics0360544220304564.html
   My bibliography  Save this article

Risk assessment of integrated electricity and heat system with independent energy operators based on Stackelberg game

Author

Listed:
  • Wang, Can
  • Yan, Chao
  • Li, Gengfeng
  • Liu, Shiyu
  • Bie, Zhaohong

Abstract

The Integrated Electricity and Heat System (IEHS) is recognized as an important trend to develop a more clean and efficient energy system. As electricity and heat systems of IEHS can be managed by different energy operators in practice, it is a new challenge that how to coordinate these independent operators under contingencies. This paper proposes a novel risk assessment method for IEHS with independent electricity system operator (ESO) and heat system operator (HSO) based on game theory. Firstly, we present a Stackelberg game model to coordinate the post-contingency dispatch of ESO and HSO, thereby reducing the economic loss of entire IEHS under contingencies. Then, an efficient solution algorithm of the bi-level game model is developed based on Karush-Kuhn-Tucker optimality conditions, strong duality theory and second-order cone relaxation. Furthermore, the novel risk indices are proposed to comprehensively depict the risk of entire IEHS and benefits of each operator, and the risk assessment procedures are developed based on Monte Carlo simulation. Case studies were conducted on an IEHS test case, and numerical results demonstrate the proposed method can effectively reduce both the risk of entire IEHS and the expected cost of operators.

Suggested Citation

  • Wang, Can & Yan, Chao & Li, Gengfeng & Liu, Shiyu & Bie, Zhaohong, 2020. "Risk assessment of integrated electricity and heat system with independent energy operators based on Stackelberg game," Energy, Elsevier, vol. 198(C).
  • Handle: RePEc:eee:energy:v:198:y:2020:i:c:s0360544220304564
    DOI: 10.1016/j.energy.2020.117349
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220304564
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117349?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Yongli & Wang, Yudong & Huang, Yujing & Li, Fang & Zeng, Ming & Li, Jiapu & Wang, Xiaohai & Zhang, Fuwei, 2019. "Planning and operation method of the regional integrated energy system considering economy and environment," Energy, Elsevier, vol. 171(C), pages 731-750.
    2. Liu, Xuezhi & Wu, Jianzhong & Jenkins, Nick & Bagdanavicius, Audrius, 2016. "Combined analysis of electricity and heat networks," Applied Energy, Elsevier, vol. 162(C), pages 1238-1250.
    3. Jing, Rui & Wang, Meng & Liang, Hao & Wang, Xiaonan & Li, Ning & Shah, Nilay & Zhao, Yingru, 2018. "Multi-objective optimization of a neighborhood-level urban energy network: Considering Game-theory inspired multi-benefit allocation constraints," Applied Energy, Elsevier, vol. 231(C), pages 534-548.
    4. Wang, Dan & Hu, Qing'e & Jia, Hongjie & Hou, Kai & Du, Wei & Chen, Ning & Wang, Xudong & Fan, Menghua, 2019. "Integrated demand response in district electricity-heating network considering double auction retail energy market based on demand-side energy stations," Applied Energy, Elsevier, vol. 248(C), pages 656-678.
    5. Fu, Xueqian & Guo, Qinglai & Sun, Hongbin & Zhang, Xiurong & Wang, Li, 2017. "Estimation of the failure probability of an integrated energy system based on the first order reliability method," Energy, Elsevier, vol. 134(C), pages 1068-1078.
    6. Wei, F. & Jing, Z.X. & Wu, Peter Z. & Wu, Q.H., 2017. "A Stackelberg game approach for multiple energies trading in integrated energy systems," Applied Energy, Elsevier, vol. 200(C), pages 315-329.
    7. Lei, Yunkai & Hou, Kai & Wang, Yue & Jia, Hongjie & Zhang, Pei & Mu, Yunfei & Jin, Xiaolong & Sui, Bingyan, 2018. "A new reliability assessment approach for integrated energy systems: Using hierarchical decoupling optimization framework and impact-increment based state enumeration method," Applied Energy, Elsevier, vol. 210(C), pages 1237-1250.
    8. Wu, Qiong & Ren, Hongbo & Gao, Weijun & Ren, Jianxing & Lao, Changshi, 2017. "Profit allocation analysis among the distributed energy network participants based on Game-theory," Energy, Elsevier, vol. 118(C), pages 783-794.
    9. Koeppel, Gaudenz & Andersson, Göran, 2009. "Reliability modeling of multi-carrier energy systems," Energy, Elsevier, vol. 34(3), pages 235-244.
    10. Fu, Xueqian & Zhang, Xiurong & Qiao, Zheng & Li, Gengyin, 2019. "Estimating the failure probability in an integrated energy system considering correlations among failure patterns," Energy, Elsevier, vol. 178(C), pages 656-666.
    11. Huang, Shaojun & Tang, Weichu & Wu, Qiuwei & Li, Canbing, 2019. "Network constrained economic dispatch of integrated heat and electricity systems through mixed integer conic programming," Energy, Elsevier, vol. 179(C), pages 464-474.
    12. Wu, Jiekang & Wu, Zhijiang & Wu, Fan & Tang, Huiling & Mao, Xiaoming, 2018. "CVaR risk-based optimization framework for renewable energy management in distribution systems with DGs and EVs," Energy, Elsevier, vol. 143(C), pages 323-336.
    13. Jadidbonab, Mohammad & Babaei, Ebrahim & Mohammadi-ivatloo, Behnam, 2019. "CVaR-constrained scheduling strategy for smart multi carrier energy hub considering demand response and compressed air energy storage," Energy, Elsevier, vol. 174(C), pages 1238-1250.
    14. Chen, Yue & Wei, Wei & Liu, Feng & Mei, Shengwei, 2017. "A multi-lateral trading model for coupled gas-heat-power energy networks," Applied Energy, Elsevier, vol. 200(C), pages 180-191.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Weiye & Xu, Siyu & Liu, Jiawei & Zhu, Jizhong & Luo, Qingju, 2023. "Participation of strategic district heating networks in electricity markets: An arbitrage mechanism and its equilibrium analysis," Applied Energy, Elsevier, vol. 350(C).
    2. Lijing Zhu & Jingzhou Wang & Arash Farnoosh & Xunzhang Pan, 2021. "A Game-Theory Analysis of Electric Vehicle Adoption in Beijing under License Plate Control Policy," Working Papers hal-03500766, HAL.
    3. Chen, J.J. & Qi, B.X. & Rong, Z.K. & Peng, K. & Zhao, Y.L. & Zhang, X.H., 2021. "Multi-energy coordinated microgrid scheduling with integrated demand response for flexibility improvement," Energy, Elsevier, vol. 217(C).
    4. Mu, Yunfei & Wang, Congshan & Cao, Yan & Jia, Hongjie & Zhang, Qingzhu & Yu, Xiaodan, 2022. "A CVaR-based risk assessment method for park-level integrated energy system considering the uncertainties and correlation of energy prices," Energy, Elsevier, vol. 247(C).
    5. Yongheng Luo & Zhonglong Li & Sen Li & Fei Jiang, 2023. "Risk Assessment for Energy Stations Based on Real-Time Equipment Failure Rates and Security Boundaries," Sustainability, MDPI, vol. 15(18), pages 1-27, September.
    6. Yongxiu He & Wei Xiong & Binyou Yang & Hai-yan Yang & Jiu-fang Zhou & Ming-li Cui & Yan Li, 2022. "Combined game model and investment decision making of power grid-distributed energy system," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 8667-8690, June.
    7. Dariusz Gołȩbiewski & Tomasz Barszcz & Wioletta Skrodzka & Igor Wojnicki & Andrzej Bielecki, 2022. "A New Approach to Risk Management in the Power Industry Based on Systems Theory," Energies, MDPI, vol. 15(23), pages 1-19, November.
    8. Fattaheian-Dehkordi, Sajjad & Abbaspour, Ali & Fotuhi-Firuzabad, Mahmud & Lehtonen, Matti, 2022. "A new management framework for mitigating intense ramping in distribution systems," Energy, Elsevier, vol. 254(PA).
    9. Lu, Zhiming & Gao, Yan & Xu, Chuanbo, 2021. "Evaluation of energy management system for regional integrated energy system under interval type-2 hesitant fuzzy environment," Energy, Elsevier, vol. 222(C).
    10. Wang, Yudong & Hu, Junjie, 2023. "Two-stage energy management method of integrated energy system considering pre-transaction behavior of energy service provider and users," Energy, Elsevier, vol. 271(C).
    11. Mimica, Marko & Giménez de Urtasun, Laura & Krajačić, Goran, 2022. "A robust risk assessment method for energy planning scenarios on smart islands under the demand uncertainty," Energy, Elsevier, vol. 240(C).
    12. Huang, Yujing & Wang, Yudong & Liu, Nian, 2022. "A two-stage energy management for heat-electricity integrated energy system considering dynamic pricing of Stackelberg game and operation strategy optimization," Energy, Elsevier, vol. 244(PA).
    13. Liang, Weikun & Lin, Shunjiang & Liu, Mingbo & Sheng, Xuan & Pan, Yue & Liu, Yun, 2023. "Risk assessment for cascading failures in regional integrated energy system considering the pipeline dynamics," Energy, Elsevier, vol. 270(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Xi & Liu, Yanfeng & Feng, Pingan & Gao, Yuan & Guo, Zhenxiang, 2021. "Optimization of a solar-based integrated energy system considering interaction between generation, network, and demand side," Applied Energy, Elsevier, vol. 294(C).
    2. Mu, Yunfei & Wang, Congshan & Cao, Yan & Jia, Hongjie & Zhang, Qingzhu & Yu, Xiaodan, 2022. "A CVaR-based risk assessment method for park-level integrated energy system considering the uncertainties and correlation of energy prices," Energy, Elsevier, vol. 247(C).
    3. Jiajia Li & Jinfu Liu & Peigang Yan & Xingshuo Li & Guowen Zhou & Daren Yu, 2021. "Operation Optimization of Integrated Energy System under a Renewable Energy Dominated Future Scene Considering Both Independence and Benefit: A Review," Energies, MDPI, vol. 14(4), pages 1-36, February.
    4. Fu, Xueqian & Li, Gengyin & Zhang, Xiurong & Qiao, Zheng, 2018. "Failure probability estimation of the gas supply using a data-driven model in an integrated energy system," Applied Energy, Elsevier, vol. 232(C), pages 704-714.
    5. Chi, Lixun & Su, Huai & Zio, Enrico & Qadrdan, Meysam & Zhou, Jing & Zhang, Li & Fan, Lin & Yang, Zhaoming & Xie, Fei & Zuo, Lili & Zhang, Jinjun, 2023. "A systematic framework for the assessment of the reliability of energy supply in Integrated Energy Systems based on a quasi-steady-state model," Energy, Elsevier, vol. 263(PB).
    6. Fu, Xueqian & Zhang, Xiurong, 2018. "Failure probability estimation of gas supply using the central moment method in an integrated energy system," Applied Energy, Elsevier, vol. 219(C), pages 1-10.
    7. Ma, Tengfei & Pei, Wei & Xiao, Hao & Kong, Li & Mu, Yunfei & Pu, Tianjiao, 2020. "The energy management strategies based on dynamic energy pricing for community integrated energy system considering the interactions between suppliers and users," Energy, Elsevier, vol. 211(C).
    8. Chi, Lixun & Su, Huai & Zio, Enrico & Zhang, Jinjun & Li, Xueyi & Zhang, Li & Fan, Lin & Zhou, Jing & Bai, Hua, 2020. "Integrated Deterministic and Probabilistic Safety Analysis of Integrated Energy Systems with bi-directional conversion," Energy, Elsevier, vol. 212(C).
    9. Wang, Lixiao & Jing, Z.X. & Zheng, J.H. & Wu, Q.H. & Wei, Feng, 2018. "Decentralized optimization of coordinated electrical and thermal generations in hierarchical integrated energy systems considering competitive individuals," Energy, Elsevier, vol. 158(C), pages 607-622.
    10. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Pan, Bo & Qi, Shiqiang, 2020. "Two-stage stochastic optimal operation of integrated electricity and heat system considering reserve of flexible devices and spatial-temporal correlation of wind power," Applied Energy, Elsevier, vol. 275(C).
    11. Yu Huang & Weiting Zhang & Kai Yang & Weizhen Hou & Yiran Huang, 2019. "An Optimal Scheduling Method for Multi-Energy Hub Systems Using Game Theory," Energies, MDPI, vol. 12(12), pages 1-20, June.
    12. Zheng, Ling & Zhou, Bin & Cao, Yijia & Wing Or, Siu & Li, Yong & Wing Chan, Ka, 2022. "Hierarchical distributed multi-energy demand response for coordinated operation of building clusters," Applied Energy, Elsevier, vol. 308(C).
    13. Wang, L.X. & Zheng, J.H. & Li, M.S. & Lin, X. & Jing, Z.X. & Wu, P.Z. & Wu, Q.H. & Zhou, X.X., 2019. "Multi-time scale dynamic analysis of integrated energy systems: An individual-based model," Applied Energy, Elsevier, vol. 237(C), pages 848-861.
    14. Dranka, Géremi Gilson & Ferreira, Paula & Vaz, A. Ismael F., 2021. "A review of co-optimization approaches for operational and planning problems in the energy sector," Applied Energy, Elsevier, vol. 304(C).
    15. Anees, Amir & Dillon, Tharam & Chen, Yi-Ping Phoebe, 2019. "A novel decision strategy for a bilateral energy contract," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    16. Pan, Zhenning & Yu, Tao & Li, Jie & Qu, Kaiping & Yang, Bo, 2020. "Risk-averse real-time dispatch of integrated electricity and heat system using a modified approximate dynamic programming approach," Energy, Elsevier, vol. 198(C).
    17. Chi, Lixun & Qadrdan, Meysam & Chaudry, Modassar & Su, Huai & Zhang, Jinjun, 2024. "Reliability of net-zero energy systems for South Wales," Applied Energy, Elsevier, vol. 369(C).
    18. Gao, Chong & Lin, Junjie & Zeng, Jianfeng & Han, Fengwu, 2022. "Wind-photovoltaic co-generation prediction and energy scheduling of low-carbon complex regional integrated energy system with hydrogen industry chain based on copula-MILP," Applied Energy, Elsevier, vol. 328(C).
    19. Tian, Hang & Zhao, Haoran & Liu, Chunyang & Chen, Jian & Wu, Qiuwei & Terzija, Vladimir, 2022. "A dual-driven linear modeling approach for multiple energy flow calculation in electricity–heat system," Applied Energy, Elsevier, vol. 314(C).
    20. Pavel Rušeljuk & Kertu Lepiksaar & Andres Siirde & Anna Volkova, 2021. "Economic Dispatch of CHP Units through District Heating Network’s Demand-Side Management," Energies, MDPI, vol. 14(15), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:198:y:2020:i:c:s0360544220304564. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.