IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i18p6605-d911084.html
   My bibliography  Save this article

Distributed Optimization of District Heating Networks Using Optimality Condition Decomposition

Author

Listed:
  • Jona Maurer

    (Institute of Control Systems (IRS), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany)

  • Jochen Illerhaus

    (Institute of Control Systems (IRS), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany)

  • Pol Jané Soneira

    (Institute of Control Systems (IRS), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany)

  • Sören Hohmann

    (Institute of Control Systems (IRS), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany)

Abstract

The optimal operation of District Heating Networks (DHNs) is a challenging task. Current or future optimal dispatch energy management systems attempt to optimize objectives, such as monetary cost minimization, emission reduction, or social welfare maximization. Typically, this requires highly nonlinear models and has a substantial computational cost, especially for large DHNs. Consequently, it is difficult to solve the resulting nonlinear programming problem in real time. In particular, as typical applications allow for no more than several minutes of computation time. However, a distributed optimization approach may provide real time performance. Thereby, the solution of the central optimization problem is obtained by solving a set of small-scale, coupled optimization problems in parallel. At runtime, information is exchanged between the small-scale problems during the iterative solution procedure. A well-known approach of this class of distributed optimization algorithms is Optimality Condition Decomposition (OCD). Important advantages of this approach are the low amount of information exchange needed between the small-scale problems and that it does not require the tuning of parameters, which can be challenging. However, the DHNs model equation structure brings along many difficulties that hamper the application of the OCD approach. Simulation results demonstrate the applicability range of the presented method.

Suggested Citation

  • Jona Maurer & Jochen Illerhaus & Pol Jané Soneira & Sören Hohmann, 2022. "Distributed Optimization of District Heating Networks Using Optimality Condition Decomposition," Energies, MDPI, vol. 15(18), pages 1-21, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6605-:d:911084
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/18/6605/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/18/6605/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Francisco Nogales & Francisco Prieto & Antonio Conejo, 2003. "A Decomposition Methodology Applied to the Multi-Area Optimal Power Flow Problem," Annals of Operations Research, Springer, vol. 120(1), pages 99-116, April.
    2. Liu, Xuezhi & Wu, Jianzhong & Jenkins, Nick & Bagdanavicius, Audrius, 2016. "Combined analysis of electricity and heat networks," Applied Energy, Elsevier, vol. 162(C), pages 1238-1250.
    3. Tan, Jin & Wu, Qiuwei & Wei, Wei & Liu, Feng & Li, Canbing & Zhou, Bin, 2020. "Decentralized robust energy and reserve Co-optimization for multiple integrated electricity and heating systems," Energy, Elsevier, vol. 205(C).
    4. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Lin, Zhongwei & Fang, Fang & Chen, Qun, 2021. "Optimal operation of integrated electricity and heat system: A review of modeling and solution methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    5. Serafeim Moustakidis & Ioannis Meintanis & George Halikias & Nicos Karcanias, 2019. "An Innovative Control Framework for District Heating Systems: Conceptualisation and Preliminary Results," Resources, MDPI, vol. 8(1), pages 1-15, January.
    6. Zheng, Jinfu & Zhou, Zhigang & Zhao, Jianing & Wang, Jinda, 2018. "Integrated heat and power dispatch truly utilizing thermal inertia of district heating network for wind power integration," Applied Energy, Elsevier, vol. 211(C), pages 865-874.
    7. Tan, Jin & Wu, Qiuwei & Hu, Qinran & Wei, Wei & Liu, Feng, 2020. "Adaptive robust energy and reserve co-optimization of integrated electricity and heating system considering wind uncertainty," Applied Energy, Elsevier, vol. 260(C).
    8. Zheng, Jinfu & Zhou, Zhigang & Zhao, Jianing & Wang, Jinda, 2018. "Effects of the operation regulation modes of district heating system on an integrated heat and power dispatch system for wind power integration," Applied Energy, Elsevier, vol. 230(C), pages 1126-1139.
    9. Huang, Jinbo & Li, Zhigang & Wu, Q.H., 2017. "Coordinated dispatch of electric power and district heating networks: A decentralized solution using optimality condition decomposition," Applied Energy, Elsevier, vol. 206(C), pages 1508-1522.
    10. Wang, Xu & Bie, Zhaohong & Liu, Fan & Kou, Yu, 2021. "Co-optimization planning of integrated electricity and district heating systems based on improved quadratic convex relaxation," Applied Energy, Elsevier, vol. 285(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Lin, Zhongwei & Fang, Fang & Chen, Qun, 2021. "Optimal operation of integrated electricity and heat system: A review of modeling and solution methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Wang, Lixiao & Jing, Z.X. & Zheng, J.H. & Wu, Q.H. & Wei, Feng, 2018. "Decentralized optimization of coordinated electrical and thermal generations in hierarchical integrated energy systems considering competitive individuals," Energy, Elsevier, vol. 158(C), pages 607-622.
    3. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Pan, Bo & Qi, Shiqiang, 2020. "Two-stage stochastic optimal operation of integrated electricity and heat system considering reserve of flexible devices and spatial-temporal correlation of wind power," Applied Energy, Elsevier, vol. 275(C).
    4. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    5. Zheng, Jinfu & Zhou, Zhigang & Zhao, Jianing & Hu, Songtao & Wang, Jinda, 2021. "Effects of intermittent heating on an integrated heat and power dispatch system for wind power integration and corresponding operation regulation," Applied Energy, Elsevier, vol. 287(C).
    6. Wang, Dan & Zhi, Yun-qiang & Jia, Hong-jie & Hou, Kai & Zhang, Shen-xi & Du, Wei & Wang, Xu-dong & Fan, Meng-hua, 2019. "Optimal scheduling strategy of district integrated heat and power system with wind power and multiple energy stations considering thermal inertia of buildings under different heating regulation modes," Applied Energy, Elsevier, vol. 240(C), pages 341-358.
    7. Shen, Lu & Dou, Xiaobo & Long, Huan & Li, Chen & Chen, Kang & Zhou, Ji, 2021. "A collaborative voltage optimization utilizing flexibility of community heating systems for high PV penetration," Energy, Elsevier, vol. 232(C).
    8. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Zhou, Bo & Guan, Qinyue & Tan, Jin & Lin, Zhongwei & Fang, Fang, 2022. "Day-ahead stochastic scheduling of integrated electricity and heat system considering reserve provision by large-scale heat pumps," Applied Energy, Elsevier, vol. 307(C).
    9. Li, Xue & Li, Wenming & Zhang, Rufeng & Jiang, Tao & Chen, Houhe & Li, Guoqing, 2020. "Collaborative scheduling and flexibility assessment of integrated electricity and district heating systems utilizing thermal inertia of district heating network and aggregated buildings," Applied Energy, Elsevier, vol. 258(C).
    10. Qian, Tong & Chen, Xingyu & Xin, Yanli & Tang, Wenhu & Wang, Lixiao, 2022. "Resilient decentralized optimization of chance constrained electricity-gas systems over lossy communication networks," Energy, Elsevier, vol. 239(PB).
    11. Jiang, Tuo & Min, Yong & Zhou, Guiping & Chen, Lei & Chen, Qun & Xu, Fei & Luo, Huanhuan, 2021. "Hierarchical dispatch method for integrated heat and power systems considering the heat transfer process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    12. Qiu, Haifeng & Vinod, Ashwin & Lu, Shuai & Gooi, Hoay Beng & Pan, Guangsheng & Zhang, Suhan & Veerasamy, Veerapandiyan, 2023. "Decentralized mixed-integer optimization for robust integrated electricity and heat scheduling," Applied Energy, Elsevier, vol. 350(C).
    13. Wu, Xuewei & Zhang, Bin & Nielsen, Mads Pagh & Chen, Zhe, 2024. "Multi-stage planning of integrated electricity-gas-heating system in the context of carbon emission reduction," Applied Energy, Elsevier, vol. 358(C).
    14. Skalyga, Mikhail & Wu, Qiuwei & Zhang, Menglin, 2021. "Uncertainty-fully-aware coordinated dispatch of integrated electricity and heat system," Energy, Elsevier, vol. 224(C).
    15. Zheng, Jinfu & Zhou, Zhigang & Zhao, Jianing & Wang, Jinda, 2018. "Effects of the operation regulation modes of district heating system on an integrated heat and power dispatch system for wind power integration," Applied Energy, Elsevier, vol. 230(C), pages 1126-1139.
    16. Yu, Haiquan & Zhou, Jianxin & Si, Fengqi & Nord, Lars O., 2022. "Combined heat and power dynamic economic dispatch considering field operational characteristics of natural gas combined cycle plants," Energy, Elsevier, vol. 244(PA).
    17. Sun, Weijia & Wang, Qi & Ye, Yujian & Tang, Yi, 2022. "Unified modelling of gas and thermal inertia for integrated energy system and its application to multitype reserve procurement," Applied Energy, Elsevier, vol. 305(C).
    18. Tan, Hong & Yan, Wei & Ren, Zhouyang & Wang, Qiujie & Mohamed, Mohamed A., 2022. "Distributionally robust operation for integrated rural energy systems with broiler houses," Energy, Elsevier, vol. 254(PC).
    19. Wang, Cheng & Liu, Chuang & Lin, Yuzhang & Bi, Tianshu, 2020. "Day-ahead dispatch of integrated electric-heat systems considering weather-parameter-driven residential thermal demands," Energy, Elsevier, vol. 203(C).
    20. Wang, Xiaojing & Han, Li & Wang, Chong & Yu, Hongbo & Yu, Xiaojiao, 2023. "A time-scale adaptive dispatching strategy considering the matching of time characteristics and dispatching periods of the integrated energy system," Energy, Elsevier, vol. 267(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6605-:d:911084. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.