IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v304y2021ics030626192101062x.html
   My bibliography  Save this article

Trilevel smart meter hardening strategy for mitigating cyber attacks against Volt/VAR optimization in smart power distribution systems

Author

Listed:
  • Choeum, Daranith
  • Choi, Dae-Hyun

Abstract

Smart meter data are crucial information for applications in distribution management system (DMS) to manage the distribution system in a reliable and secure manner. However, the smart meter can be attacked by an adversary through the injection of false data into smart meters. This cyber attack can lead to malfunction of the applications that use smart meter data, thereby yielding an abnormal distribution system operation. This paper presents a multilevel optimization-based smart meter hardening strategy where a defender can mitigate the detrimental impact of cyber attacks on volt/VAR optimization (VVO) in DMS via the manipulation of smart meter data. A trilevel defender–attacker–defender (DAD) model with limited attack and defense resources is proposed to determine an optimal attack mitigation strategy. The proposed DAD model aims to identify smart meters that must be hardened from the VVO attack (upper level) while considering both the worst-case attack against the VVO (middle level) and the VVO during the attack (lower level). A nested column-and-constraint generation algorithm is applied to the DAD model to identify and prioritize the most essential smart meters that should be hardened to mitigate the impact of the VVO attack. An IEEE 33-node distribution feeder was used to quantify the performance of the proposed mitigation framework in terms of voltage deviation, solar photovoltaic (PV) penetration level, attack/defense resources, and computational complexity. The simulation results show that mean percentage errors for voltage deviation of the attack and the defense are calculated as 22.02% and 6.22%, respectively.

Suggested Citation

  • Choeum, Daranith & Choi, Dae-Hyun, 2021. "Trilevel smart meter hardening strategy for mitigating cyber attacks against Volt/VAR optimization in smart power distribution systems," Applied Energy, Elsevier, vol. 304(C).
  • Handle: RePEc:eee:appene:v:304:y:2021:i:c:s030626192101062x
    DOI: 10.1016/j.apenergy.2021.117710
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192101062X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117710?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yuan, Wei & Zhao, Long & Zeng, Bo, 2014. "Optimal power grid protection through a defender–attacker–defender model," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 83-89.
    2. Lin, Yanling & Bie, Zhaohong, 2018. "Tri-level optimal hardening plan for a resilient distribution system considering reconfiguration and DG islanding," Applied Energy, Elsevier, vol. 210(C), pages 1266-1279.
    3. Lai, Kexing & Illindala, Mahesh & Subramaniam, Karthikeyan, 2019. "A tri-level optimization model to mitigate coordinated attacks on electric power systems in a cyber-physical environment," Applied Energy, Elsevier, vol. 235(C), pages 204-218.
    4. Qiu, Haifeng & Gu, Wei & Pan, Jing & Xu, Bin & Xu, Yinliang & Fan, Miao & Wu, Zhi, 2018. "Multi-interval-uncertainty constrained robust dispatch for AC/DC hybrid microgrids with dynamic energy storage degradation," Applied Energy, Elsevier, vol. 228(C), pages 205-214.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Wen-Ting & Chen, Guo & Huang, Yuhan, 2022. "Incentive edge-based federated learning for false data injection attack detection on power grid state estimation: A novel mechanism design approach," Applied Energy, Elsevier, vol. 314(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sayed, Ahmed R. & Wang, Cheng & Bi, Tianshu, 2019. "Resilient operational strategies for power systems considering the interactions with natural gas systems," Applied Energy, Elsevier, vol. 241(C), pages 548-566.
    2. Omid Sadeghian & Behnam Mohammadi-Ivatloo & Fazel Mohammadi & Zulkurnain Abdul-Malek, 2022. "Protecting Power Transmission Systems against Intelligent Physical Attacks: A Critical Systematic Review," Sustainability, MDPI, vol. 14(19), pages 1-24, September.
    3. Peng Jiang & Shengjun Huang & Tao Zhang, 2020. "Asymmetric Information in Military Microgrid Confrontations—Evaluation Metric and Influence Analysis," Energies, MDPI, vol. 13(8), pages 1-21, April.
    4. Qiu, Haifeng & You, Fengqi, 2020. "Decentralized-distributed robust electric power scheduling for multi-microgrid systems," Applied Energy, Elsevier, vol. 269(C).
    5. Leitner, Markus & Ljubić, Ivana & Monaci, Michele & Sinnl, Markus & Tanınmış, Kübra, 2023. "An exact method for binary fortification games," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1026-1039.
    6. Qiu, Haifeng & Gu, Wei & Liu, Pengxiang & Sun, Qirun & Wu, Zhi & Lu, Xi, 2022. "Application of two-stage robust optimization theory in power system scheduling under uncertainties: A review and perspective," Energy, Elsevier, vol. 251(C).
    7. Lai, Kexing & Illindala, Mahesh & Subramaniam, Karthikeyan, 2019. "A tri-level optimization model to mitigate coordinated attacks on electric power systems in a cyber-physical environment," Applied Energy, Elsevier, vol. 235(C), pages 204-218.
    8. Tian, Meng & Dong, Zhengcheng & Gong, Li & Wang, Xianpei, 2024. "Line hardening strategies for resilient power systems considering cyber-topology interdependence," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    9. Wang, Y. & Rousis, A. Oulis & Strbac, G., 2022. "Resilience-driven optimal sizing and pre-positioning of mobile energy storage systems in decentralized networked microgrids," Applied Energy, Elsevier, vol. 305(C).
    10. Lei, Shunbo & Pozo, David & Wang, Ming-Hao & Li, Qifeng & Li, Yupeng & Peng, Chaoyi, 2022. "Power economic dispatch against extreme weather conditions: The price of resilience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    11. Mishra, Dillip Kumar & Ghadi, Mojtaba Jabbari & Azizivahed, Ali & Li, Li & Zhang, Jiangfeng, 2021. "A review on resilience studies in active distribution systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    12. Singh, Bharat & Kumar, Ashwani, 2023. "Optimal energy management and feasibility analysis of hybrid renewable energy sources with BESS and impact of electric vehicle load with demand response program," Energy, Elsevier, vol. 278(PA).
    13. Levitin, Gregory & Xing, Liudong & Xiang, Yanping, 2020. "Optimization of time constrained N-version programming service components with competing task execution and version corruption processes," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    14. Zhang, Jiyuan & Tang, Hailong & Chen, Min, 2019. "Linear substitute model-based uncertainty analysis of complicated non-linear energy system performance (case study of an adaptive cycle engine)," Applied Energy, Elsevier, vol. 249(C), pages 87-108.
    15. Sun, Li & Li, Guanru & Hua, Q.S. & Jin, Yuhui, 2020. "A hybrid paradigm combining model-based and data-driven methods for fuel cell stack cooling control," Renewable Energy, Elsevier, vol. 147(P1), pages 1642-1652.
    16. Marcos Costa Roboredo & Luiz Aizemberg & Artur Alves Pessoa, 2019. "An exact approach for the r-interdiction covering problem with fortification," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(1), pages 111-131, March.
    17. Wang, Wei & Cammi, Antonio & Di Maio, Francesco & Lorenzi, Stefano & Zio, Enrico, 2018. "A Monte Carlo-based exploration framework for identifying components vulnerable to cyber threats in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 24-37.
    18. Alex Guamán & Alex Valenzuela, 2021. "Distribution Network Reconfiguration Applied to Multiple Faulty Branches Based on Spanning Tree and Genetic Algorithms," Energies, MDPI, vol. 14(20), pages 1-16, October.
    19. Xiaoge Zhang & Sankaran Mahadevan & Kai Goebel, 2019. "Network Reconfiguration for Increasing Transportation System Resilience Under Extreme Events," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 2054-2075, September.
    20. Zhao, Bo & Ren, Junzhi & Chen, Jian & Lin, Da & Qin, Ruwen, 2020. "Tri-level robust planning-operation co-optimization of distributed energy storage in distribution networks with high PV penetration," Applied Energy, Elsevier, vol. 279(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:304:y:2021:i:c:s030626192101062x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.