IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v252y2024ics0951832024005106.html
   My bibliography  Save this article

Improving resilience of cyber–physical power systems against cyber attacks through strategic energy storage deployment

Author

Listed:
  • Zhao, Tianxiang
  • Tu, Haicheng
  • Jin, Rui
  • Xia, Yongxiang
  • Wang, Fangfang

Abstract

The widespread integration of advanced technologies has increased the vulnerability of Cyber–Physical Power Systems (CPPS) against cyber attacks. In addition, the incorporation of renewable energy sources (RESs) poses extra uncertainty challenges in CPPS security. In this paper, focusing on resilience assessment and improvement, we first propose a comprehensive framework to reveal the whole process from attack initiation to performance recovery. Then, regarding the protection strategies before and after cyber attacks, we improve resilience performance by protecting critical nodes and deploying energy storage nodes. The effectiveness of our proposed methods is validated through testing on a simulated model, which couples the IEEE 39-bus power system with a scale-free communication network. The results demonstrate that the deployment of energy storage plays a significant role in suppressing the uncertainty of RESs and improving the resilience of CPPS against cyber attacks. In addition, we employ a heuristic algorithm to optimize the placement of energy storage nodes. Our work not only represents an overview of the resilience process but also provides system dispatchers with practical strategies for improving the resilience of renewable CPPS against the growing threat of cyber attacks.

Suggested Citation

  • Zhao, Tianxiang & Tu, Haicheng & Jin, Rui & Xia, Yongxiang & Wang, Fangfang, 2024. "Improving resilience of cyber–physical power systems against cyber attacks through strategic energy storage deployment," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
  • Handle: RePEc:eee:reensy:v:252:y:2024:i:c:s0951832024005106
    DOI: 10.1016/j.ress.2024.110438
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024005106
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110438?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tang, Daogui & Fang, Yi-Ping & Zio, Enrico, 2023. "Vulnerability analysis of demand-response with renewable energy integration in smart grids to cyber attacks and online detection methods," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    2. Yang, Shenhao & Chen, Weirong & Zhang, Xuexia & Yang, Weiqi, 2021. "A Graph-based Method for Vulnerability Analysis of Renewable Energy integrated Power Systems to Cascading Failures," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    3. Luburić, Zora & Pandžić, Hrvoje & Plavšić, Tomislav & Teklić, Ljupko & Valentić, Vladimir, 2018. "Role of energy storage in ensuring transmission system adequacy and security," Energy, Elsevier, vol. 156(C), pages 229-239.
    4. Farihan Mohamad & Jiashen Teh, 2018. "Impacts of Energy Storage System on Power System Reliability: A Systematic Review," Energies, MDPI, vol. 11(7), pages 1-23, July.
    5. Lai, Kexing & Illindala, Mahesh & Subramaniam, Karthikeyan, 2019. "A tri-level optimization model to mitigate coordinated attacks on electric power systems in a cyber-physical environment," Applied Energy, Elsevier, vol. 235(C), pages 204-218.
    6. Farihan Mohamad & Jiashen Teh & Ching-Ming Lai & Liang-Rui Chen, 2018. "Development of Energy Storage Systems for Power Network Reliability: A Review," Energies, MDPI, vol. 11(9), pages 1-19, August.
    7. Daogui Tang & Yi-Ping Fang & Enrico Zio, 2023. "Vulnerability analysis of demand-response with renewable energy integration in smart grids to cyber attacks and online detection methods," Post-Print hal-04103525, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Geng, Sunyue & Liu, Sifeng, 2025. "An agent-based framework for resilience analysis of service networks," Reliability Engineering and System Safety, Elsevier, vol. 253(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Shuai & Wei, Li & Wang, Huai, 2020. "Review on reliability of supercapacitors in energy storage applications," Applied Energy, Elsevier, vol. 278(C).
    2. Huaizhi Wang & Xian Zhang & Qing Li & Guibin Wang & Hui Jiang & Jianchun Peng, 2018. "Recursive Method for Distribution System Reliability Evaluation," Energies, MDPI, vol. 11(10), pages 1-15, October.
    3. Tolga Kara & Ahmet Duran Şahin, 2023. "Implications of Climate Change on Wind Energy Potential," Sustainability, MDPI, vol. 15(20), pages 1-26, October.
    4. Magdalena Bartecka & Piotr Marchel & Krzysztof Zagrajek & Mirosław Lewandowski & Mariusz Kłos, 2024. "Reliability Model of Battery Energy Storage Cooperating with Prosumer PV Installations," Energies, MDPI, vol. 17(23), pages 1-23, November.
    5. Fouzi Harrou & Benamar Bouyeddou & Abdelkader Dairi & Ying Sun, 2024. "Exploiting Autoencoder-Based Anomaly Detection to Enhance Cybersecurity in Power Grids," Future Internet, MDPI, vol. 16(6), pages 1-19, May.
    6. Liu, Qi & Sun, Ke & Liu, Wenqi & Li, Yufeng & Zheng, Xiangyu & Cao, Chenhong & Li, Jiangtao & Qin, Wutao, 2025. "Quantitative risk assessment for connected automated Vehicles: Integrating improved STPA-SafeSec and Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    7. Jiashen Teh, 2018. "Adequacy Assessment of Wind Integrated Generating Systems Incorporating Demand Response and Battery Energy Storage System," Energies, MDPI, vol. 11(10), pages 1-12, October.
    8. Rouzbeh Haghighi & Van-Hai Bui & Mengqi Wang & Wencong Su, 2024. "Survey of Reliability Challenges and Assessment in Power Grids with High Penetration of Inverter-Based Resources," Energies, MDPI, vol. 17(21), pages 1-26, October.
    9. Ding, Xiao & Wang, Huan & Zhang, Xi & Ma, Chuang & Zhang, Hai-Feng, 2024. "Dual nature of cyber–physical power systems and the mitigation strategies," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    10. Mohamad, Farihan & Teh, Jiashen & Lai, Ching-Ming, 2021. "Optimum allocation of battery energy storage systems for power grid enhanced with solar energy," Energy, Elsevier, vol. 223(C).
    11. Qing Zhou & Yuelei Xu & Xin Qi & Zhaoxiang Zhang, 2022. "Design and Simulation of a Highly Reliable Modular High-Power Current Source," Energies, MDPI, vol. 15(22), pages 1-18, November.
    12. Hassan Haes Alhelou & Mohamad-Esmail Hamedani-Golshan & Reza Zamani & Ehsan Heydarian-Forushani & Pierluigi Siano, 2018. "Challenges and Opportunities of Load Frequency Control in Conventional, Modern and Future Smart Power Systems: A Comprehensive Review," Energies, MDPI, vol. 11(10), pages 1-35, September.
    13. Marcin Szott & Szymon Wermiński & Marcin Jarnut & Jacek Kaniewski & Grzegorz Benysek, 2021. "Battery Energy Storage System for Emergency Supply and Improved Reliability of Power Networks," Energies, MDPI, vol. 14(3), pages 1-21, January.
    14. Jose L. López-Prado & Jorge I. Vélez & Guisselle A. Garcia-Llinás, 2020. "Reliability Evaluation in Distribution Networks with Microgrids: Review and Classification of the Literature," Energies, MDPI, vol. 13(23), pages 1-31, November.
    15. Yuan, Zixia & Xiong, Guojiang & Fu, Xiaofan & Mohamed, Ali Wagdy, 2023. "Improving fault tolerance in diagnosing power system failures with optimal hierarchical extreme learning machine," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    16. Hunt, Julian David & Zakeri, Behnam & Falchetta, Giacomo & Nascimento, Andreas & Wada, Yoshihide & Riahi, Keywan, 2020. "Mountain Gravity Energy Storage: A new solution for closing the gap between existing short- and long-term storage technologies," Energy, Elsevier, vol. 190(C).
    17. Nilton Bispo Amado & Erick Del Bianco Pelegia & Ildo Luís Sauer, 2021. "Capacity Value from Wind and Solar Sources in Systems with Variable Dispatchable Capacity—An Application in the Brazilian Hydrothermal System," Energies, MDPI, vol. 14(11), pages 1-26, May.
    18. Mihaela IARMENCO & Evlampie DONOS, 2020. "Policies of Consumer Protection within the Process of Developing Renewable Energy Sources," CSIE Working Papers, Center for Studies in European Integration (CSEI), Academy of Economic Studies of Moldova (ASEM), issue 16, pages 40-49, December.
    19. Zhao, Haitao & Jiang, Peng & Chen, Zhe & Ezeh, Collins I. & Hong, Yuanda & Guo, Yishan & Zheng, Chenghang & Džapo, Hrvoje & Gao, Xiang & Wu, Tao, 2019. "Improvement of fuel sources and energy products flexibility in coal power plants via energy-cyber-physical-systems approach," Applied Energy, Elsevier, vol. 254(C).
    20. Zhang, Jianhua & Wang, Ziqi & Wang, Shuliang & Shao, Wenchao & Zhao, Xun & Liu, Weizhi, 2021. "Vulnerability assessments of weighted urban rail transit networks with integrated coupled map lattices," Reliability Engineering and System Safety, Elsevier, vol. 214(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:252:y:2024:i:c:s0951832024005106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.