IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v304y2021ics0306261921010199.html
   My bibliography  Save this article

Missing data imputation using mixture factor analysis for building electric load data

Author

Listed:
  • Jeong, Dongyeon
  • Park, Chiwoo
  • Ko, Young Myoung

Abstract

We propose a mixture factor analysis (MFA) method for estimating missing values in building electric load data. Buildings consume a tremendous amount of energy. Thanks to the recent advances in data technologies such as machine learning and applied statistics, data-driven approaches to making buildings more energy-efficient become a major research area. However, building electric load data suffer from quality issues due to data missing originated from malfunctioning sensors, network stability, and other environmental causes. We note that data missing can occur even under advanced Internet Technology (IT) systems such as energy information systems (EIS) and energy management systems (EMS) due to signal stability and low-speed computers. The existence of missing data may significantly affect building operations, causing inaccuracy in evaluating building status and forecasting future electric demands. In this respect, dealing with missing data problems should be as important as developing highly accurate forecasting algorithms. While investigating load data, we find that building electric loads exhibit distinct patterns with cyclic rotations that we can take advantage of in both model design and selection stages. Motivated by the finding, unlike the previous studies designed for general time-series data, we propose a novel data imputation model to represent patterns and their cyclic rotations in electric load data. Simulation studies reveal that the proposed model works well when the time window size is a divisor of the cycle length, which significantly reduces model selection efforts. Numerical results with two real data sets justify our findings and the performance of the proposed approach against benchmark methods.

Suggested Citation

  • Jeong, Dongyeon & Park, Chiwoo & Ko, Young Myoung, 2021. "Missing data imputation using mixture factor analysis for building electric load data," Applied Energy, Elsevier, vol. 304(C).
  • Handle: RePEc:eee:appene:v:304:y:2021:i:c:s0306261921010199
    DOI: 10.1016/j.apenergy.2021.117655
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921010199
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117655?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stephen Johnson, 1967. "Hierarchical clustering schemes," Psychometrika, Springer;The Psychometric Society, vol. 32(3), pages 241-254, September.
    2. Jeong, Dongyeon & Park, Chiwoo & Ko, Young Myoung, 2021. "Short-term electric load forecasting for buildings using logistic mixture vector autoregressive model with curve registration," Applied Energy, Elsevier, vol. 282(PB).
    3. Huyghues-Beaufond, Nathalie & Tindemans, Simon & Falugi, Paola & Sun, Mingyang & Strbac, Goran, 2020. "Robust and automatic data cleansing method for short-term load forecasting of distribution feeders," Applied Energy, Elsevier, vol. 261(C).
    4. Demirhan, Haydar & Renwick, Zoe, 2018. "Missing value imputation for short to mid-term horizontal solar irradiance data," Applied Energy, Elsevier, vol. 225(C), pages 998-1012.
    5. Rahman, Aowabin & Srikumar, Vivek & Smith, Amanda D., 2018. "Predicting electricity consumption for commercial and residential buildings using deep recurrent neural networks," Applied Energy, Elsevier, vol. 212(C), pages 372-385.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jaeik Jeong & Tai-Yeon Ku & Wan-Ki Park, 2023. "Denoising Masked Autoencoder-Based Missing Imputation within Constrained Environments for Electric Load Data," Energies, MDPI, vol. 16(24), pages 1-18, December.
    2. Fan, Cheng & Chen, Ruikun & Mo, Jinhan & Liao, Longhui, 2024. "Personalized federated learning for cross-building energy knowledge sharing: Cost-effective strategies and model architectures," Applied Energy, Elsevier, vol. 362(C).
    3. Liguori, Antonio & Markovic, Romana & Ferrando, Martina & Frisch, Jérôme & Causone, Francesco & van Treeck, Christoph, 2023. "Augmenting energy time-series for data-efficient imputation of missing values," Applied Energy, Elsevier, vol. 334(C).
    4. Liu, Liqi & Liu, Yanli, 2022. "Load image inpainting: An improved U-Net based load missing data recovery method," Applied Energy, Elsevier, vol. 327(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hafeez, Ghulam & Alimgeer, Khurram Saleem & Khan, Imran, 2020. "Electric load forecasting based on deep learning and optimized by heuristic algorithm in smart grid," Applied Energy, Elsevier, vol. 269(C).
    2. Huyghues-Beaufond, Nathalie & Tindemans, Simon & Falugi, Paola & Sun, Mingyang & Strbac, Goran, 2020. "Robust and automatic data cleansing method for short-term load forecasting of distribution feeders," Applied Energy, Elsevier, vol. 261(C).
    3. Claudia Quinteros-Cartaya & Guillermo Solorio-Magaña & Francisco Javier Núñez-Cornú & Felipe de Jesús Escalona-Alcázar & Diana Núñez, 2023. "Microearthquakes in the Guadalajara Metropolitan Zone, Mexico: evidence from buried active faults in Tesistán Valley, Zapopan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 2797-2818, April.
    4. Katarzyna Hampel & Paulina Ucieklak-Jez & Agnieszka Bem, 2021. "Health System Responsiveness in the Light of the Euro Health Consumer Index," European Research Studies Journal, European Research Studies Journal, vol. 0(4B), pages 659-667.
    5. Kim, Junyung & Shah, Asad Ullah Amin & Kang, Hyun Gook, 2020. "Dynamic risk assessment with bayesian network and clustering analysis," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    6. Chen, Zhelun & O’Neill, Zheng & Wen, Jin & Pradhan, Ojas & Yang, Tao & Lu, Xing & Lin, Guanjing & Miyata, Shohei & Lee, Seungjae & Shen, Chou & Chiosa, Roberto & Piscitelli, Marco Savino & Capozzoli, , 2023. "A review of data-driven fault detection and diagnostics for building HVAC systems," Applied Energy, Elsevier, vol. 339(C).
    7. Liu, Che & Sun, Bo & Zhang, Chenghui & Li, Fan, 2020. "A hybrid prediction model for residential electricity consumption using holt-winters and extreme learning machine," Applied Energy, Elsevier, vol. 275(C).
    8. Roberts, Leigh, 2014. "Consistent estimation of breakpoints in time series, with application to wavelet analysis of Citigroup returns," Working Paper Series 18815, Victoria University of Wellington, School of Economics and Finance.
    9. David G Mets & Michael S Brainard, 2018. "An automated approach to the quantitation of vocalizations and vocal learning in the songbird," PLOS Computational Biology, Public Library of Science, vol. 14(8), pages 1-29, August.
    10. Michael Brusco & J Dennis Cradit & Douglas Steinley, 2021. "A comparison of 71 binary similarity coefficients: The effect of base rates," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-19, April.
    11. Noah E. Friedkin, 1984. "Structural Cohesion and Equivalence Explanations of Social Homogeneity," Sociological Methods & Research, , vol. 12(3), pages 235-261, February.
    12. Lu, Yakai & Tian, Zhe & Zhou, Ruoyu & Liu, Wenjing, 2021. "A general transfer learning-based framework for thermal load prediction in regional energy system," Energy, Elsevier, vol. 217(C).
    13. David Matesanz Gomez & Guillermo J. Ortega & Benno Torgler, 2011. "Measuring globalization: A hierarchical network approach," CREMA Working Paper Series 2011-11, Center for Research in Economics, Management and the Arts (CREMA).
    14. Balepur, Prashant Narayan, 1998. "Impacts of Computer-Mediated Communication on Travel and Communication Patterns: The Davis Community Network Study," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6cb1f85c, Institute of Transportation Studies, UC Berkeley.
    15. İsmail Güzel & Atabey Kaygun, 2022. "A new non-archimedean metric on persistent homology," Computational Statistics, Springer, vol. 37(4), pages 1963-1983, September.
    16. Lisa Price, 2001. "Demystifying farmers' entomological and pest management knowledge: A methodology for assessing the impacts on knowledge from IPM-FFS and NES interventions," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 18(2), pages 153-176, June.
    17. Elisa Frutos-Bernal & Ángel Martín del Rey & Irene Mariñas-Collado & María Teresa Santos-Martín, 2022. "An Analysis of Travel Patterns in Barcelona Metro Using Tucker3 Decomposition," Mathematics, MDPI, vol. 10(7), pages 1-17, March.
    18. Geert Soete & Wayne DeSarbo & J. Carroll, 1985. "Optimal variable weighting for hierarchical clustering: An alternating least-squares algorithm," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 173-192, December.
    19. Zhao, He & Huang, Xiaoqiao & Xiao, Zenan & Shi, Haoyuan & Li, Chengli & Tai, Yonghang, 2024. "Week-ahead hourly solar irradiation forecasting method based on ICEEMDAN and TimesNet networks," Renewable Energy, Elsevier, vol. 220(C).
    20. Silvia Blasi & Edoardo Gobbo & Silvia Rita Sedita, 2022. "Big Data for smart cities and citizen engagement: evidence from Twitter data analysis on Italian municipalities," Working Papers - Business wp2022_01.rdf, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:304:y:2021:i:c:s0306261921010199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.