IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006437.html
   My bibliography  Save this article

An automated approach to the quantitation of vocalizations and vocal learning in the songbird

Author

Listed:
  • David G Mets
  • Michael S Brainard

Abstract

Studies of learning mechanisms critically depend on the ability to accurately assess learning outcomes. This assessment can be impeded by the often complex, multidimensional nature of behavior. We present a novel, automated approach to evaluating imitative learning. Conceptually, our approach estimates how much of the content present in a reference behavior is absent from the learned behavior. We validate our approach through examination of songbird vocalizations, complex learned behaviors the study of which has provided many insights into sensory-motor learning in general and vocal learning in particular. Historically, learning has been holistically assessed by human inspection or through comparison of specific song features selected by experimenters (e.g. fundamental frequency, spectral entropy). In contrast, our approach uses statistical models to broadly capture the structure of each song, and then estimates the divergence between the two models. We show that our measure of song learning (the Kullback-Leibler divergence between two distributions corresponding to specific song data, or, Song DKL) is well correlated with human evaluation of song learning. We then expand the analysis beyond learning and show that Song DKL also detects the typical song deterioration that occurs following deafening. Finally, we illustrate how this measure can be extended to quantify differences in other complex behaviors such as human speech and handwriting. This approach potentially provides a framework for assessing learning across a broad range of behaviors like song that can be described as a set of discrete and repeated motor actions.Author summary: Measuring learning outcomes is a critical objective of research into the mechanisms that support learning. Demonstration that a given manipulation results in better or worse learning outcomes requires an accurate and consistent measurement of learning quality. However, many behaviors (e.g. speaking, walking, and writing) are complex and multidimensional, confounding the assessment of learning. One behavior subject to such confounds, vocal learning in Estrildid finches, has emerged as a vital model for sensory motor learning broadly and human speech learning in particular. Here, we demonstrate a new approach to the assessment of learning for complex high dimensional behaviors. Conceptually, we estimate the amount of content present in a reference behavior that is absent in the resultant learned behavior. We show that this measure provides a holistic and automated assessment of vocal learning in Estrildid finches that is consistent with human assessment. We then illustrate how this measure can be used to quantify changes in other complex behaviors such as human speech. We conclude that this approach could be useful in assessing shared content in other similarly structured behaviors composed of a set of discrete and repeated motor actions.

Suggested Citation

  • David G Mets & Michael S Brainard, 2018. "An automated approach to the quantitation of vocalizations and vocal learning in the songbird," PLOS Computational Biology, Public Library of Science, vol. 14(8), pages 1-29, August.
  • Handle: RePEc:plo:pcbi00:1006437
    DOI: 10.1371/journal.pcbi.1006437
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006437
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006437&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006437?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yael Mandelblat-Cerf & Michale S Fee, 2014. "An Automated Procedure for Evaluating Song Imitation," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-13, May.
    2. Stephen Johnson, 1967. "Hierarchical clustering schemes," Psychometrika, Springer;The Psychometric Society, vol. 32(3), pages 241-254, September.
    3. Michael S. Brainard & Allison J. Doupe, 2000. "Interruption of a basal ganglia–forebrain circuit prevents plasticity of learned vocalizations," Nature, Nature, vol. 404(6779), pages 762-766, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:ers:journl:v:xxiv:y:2021:i:4b:p:659-667 is not listed on IDEAS
    2. Kim, Junyung & Shah, Asad Ullah Amin & Kang, Hyun Gook, 2020. "Dynamic risk assessment with bayesian network and clustering analysis," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    3. Noah E. Friedkin, 1984. "Structural Cohesion and Equivalence Explanations of Social Homogeneity," Sociological Methods & Research, , vol. 12(3), pages 235-261, February.
    4. David Matesanz Gomez & Guillermo J. Ortega & Benno Torgler, 2011. "Measuring globalization: A hierarchical network approach," CREMA Working Paper Series 2011-11, Center for Research in Economics, Management and the Arts (CREMA).
    5. Balepur, Prashant Narayan, 1998. "Impacts of Computer-Mediated Communication on Travel and Communication Patterns: The Davis Community Network Study," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6cb1f85c, Institute of Transportation Studies, UC Berkeley.
    6. Lisa Price, 2001. "Demystifying farmers' entomological and pest management knowledge: A methodology for assessing the impacts on knowledge from IPM-FFS and NES interventions," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 18(2), pages 153-176, June.
    7. Elisa Frutos-Bernal & Ángel Martín del Rey & Irene Mariñas-Collado & María Teresa Santos-Martín, 2022. "An Analysis of Travel Patterns in Barcelona Metro Using Tucker3 Decomposition," Mathematics, MDPI, vol. 10(7), pages 1-17, March.
    8. Geert Soete & Wayne DeSarbo & J. Carroll, 1985. "Optimal variable weighting for hierarchical clustering: An alternating least-squares algorithm," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 173-192, December.
    9. Teh, Boon Kin & Goo, Yik Wen & Lian, Tong Wei & Ong, Wei Guang & Choi, Wen Ting & Damodaran, Mridula & Cheong, Siew Ann, 2015. "The Chinese Correction of February 2007: How financial hierarchies change in a market crash," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 225-241.
    10. Yoshio Takane & Forrest Young & Jan Leeuw, 1977. "Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features," Psychometrika, Springer;The Psychometric Society, vol. 42(1), pages 7-67, March.
    11. Wentao Qu & Xianchao Xiu & Huangyue Chen & Lingchen Kong, 2023. "A Survey on High-Dimensional Subspace Clustering," Mathematics, MDPI, vol. 11(2), pages 1-39, January.
    12. Taggart, J. H., 1999. "MNC subsidiary performance, risk, and corporate expectations," International Business Review, Elsevier, vol. 8(2), pages 233-255, April.
    13. Sorin Alexandru Ungureanu & Diana Andreea Mandricel & Bogdan Ioan Coculescu & Ionica Oncioiu, 2020. "Prevention in Dental Medicine. Case Studies and Explanations Regarding the Cost-Benefit Ratio," Academic Journal of Economic Studies, Faculty of Finance, Banking and Accountancy Bucharest,"Dimitrie Cantemir" Christian University Bucharest, vol. 6(2), pages 135-147, June.
    14. Fang, Yixin & Wang, Junhui, 2011. "Penalized cluster analysis with applications to family data," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2128-2136, June.
    15. Xingyin Duan & Xiaobo Wu & Jie Ge & Li Deng & Liang Shen & Jingwen Xu & Xiaoying Xu & Qin He & Yixin Chen & Xuesong Gao & Bing Li, 2024. "A Novel Hierarchical Clustering Sequential Forward Feature Selection Method for Paddy Rice Agriculture Mapping Based on Time-Series Images," Agriculture, MDPI, vol. 14(9), pages 1-20, August.
    16. Simon Blanchard & Wayne DeSarbo, 2013. "A New Zero-Inflated Negative Binomial Methodology for Latent Category Identification," Psychometrika, Springer;The Psychometric Society, vol. 78(2), pages 322-340, April.
    17. Satoru Yokoyama & Atsuho Nakayama & Akinori Okada, 2009. "One-mode three-way overlapping cluster analysis," Computational Statistics, Springer, vol. 24(1), pages 165-179, February.
    18. Vincent S. Tseng & Hsieh-Hui Yu & Shih-Chiang Yang, 2009. "Efficient mining of multilevel gene association rules from microarray and gene ontology," Information Systems Frontiers, Springer, vol. 11(4), pages 433-447, September.
    19. repec:jss:jstsof:35:i07 is not listed on IDEAS
    20. Thomas J. Lampoltshammer & Valerie Albrecht & Corinna Raith, 2021. "Teaching Digital Sustainability in Higher Education from a Transdisciplinary Perspective," Sustainability, MDPI, vol. 13(21), pages 1-21, October.
    21. Sumin Yu & Zhijiao Du & Xuanhua Xu, 2021. "Hierarchical Punishment-Driven Consensus Model for Probabilistic Linguistic Large-Group Decision Making with Application to Global Supplier Selection," Group Decision and Negotiation, Springer, vol. 30(6), pages 1343-1372, December.
    22. Shih-Chieh Chen & Ming-Young Jan & Kuo-Liang Lin & Sung-Lin Chao & Chien-Sen Liao, 2017. "Sustainability of Constructed Wetland under the Impact of Aquatic Organisms Overloading," Sustainability, MDPI, vol. 9(5), pages 1-12, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006437. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.