IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v42y1977i1p7-67.html
   My bibliography  Save this article

Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features

Author

Listed:
  • Yoshio Takane
  • Forrest Young
  • Jan Leeuw

Abstract

No abstract is available for this item.

Suggested Citation

  • Yoshio Takane & Forrest Young & Jan Leeuw, 1977. "Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features," Psychometrika, Springer;The Psychometric Society, vol. 42(1), pages 7-67, March.
  • Handle: RePEc:spr:psycho:v:42:y:1977:i:1:p:7-67
    DOI: 10.1007/BF02293745
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF02293745
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF02293745?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Carroll & Jih-Jie Chang, 1970. "Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition," Psychometrika, Springer;The Psychometric Society, vol. 35(3), pages 283-319, September.
    2. Richard Johnson, 1973. "Pairwise nonmetric multidimensional scaling," Psychometrika, Springer;The Psychometric Society, vol. 38(1), pages 11-18, March.
    3. Stephen Johnson, 1967. "Hierarchical clustering schemes," Psychometrika, Springer;The Psychometric Society, vol. 32(3), pages 241-254, September.
    4. Louis Guttman, 1968. "A general nonmetric technique for finding the smallest coordinate space for a configuration of points," Psychometrika, Springer;The Psychometric Society, vol. 33(4), pages 469-506, December.
    5. Carl Eckart & Gale Young, 1936. "The approximation of one matrix by another of lower rank," Psychometrika, Springer;The Psychometric Society, vol. 1(3), pages 211-218, September.
    6. Samuel Messick & Robert Abelson, 1956. "The additive constant problem in multidimensional scaling," Psychometrika, Springer;The Psychometric Society, vol. 21(1), pages 1-15, March.
    7. Ian Spence, 1972. "A monte carlo evaluation of three nonmetric multidimensional scaling algorithms," Psychometrika, Springer;The Psychometric Society, vol. 37(4), pages 461-486, December.
    8. Peter Schönemann, 1972. "An algebraic solution for a class of subjective metrics models," Psychometrika, Springer;The Psychometric Society, vol. 37(4), pages 441-451, December.
    9. Ledyard Tucker, 1972. "Relations between multidimensional scaling and three-mode factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 37(1), pages 3-27, March.
    10. Roger Shepard, 1962. "The analysis of proximities: Multidimensional scaling with an unknown distance function. II," Psychometrika, Springer;The Psychometric Society, vol. 27(3), pages 219-246, September.
    11. Ledyard Tucker, 1966. "Some mathematical notes on three-mode factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 31(3), pages 279-311, September.
    12. Forrest Young & Jan Leeuw & Yoshio Takane, 1976. "Regression with qualitative and quantitative variables: An alternating least squares method with optimal scaling features," Psychometrika, Springer;The Psychometric Society, vol. 41(4), pages 505-529, December.
    13. Roger Shepard, 1962. "The analysis of proximities: Multidimensional scaling with an unknown distance function. I," Psychometrika, Springer;The Psychometric Society, vol. 27(2), pages 125-140, June.
    14. Forrest Young, 1970. "Nonmetric multidimensional scaling: Recovery of metric information," Psychometrika, Springer;The Psychometric Society, vol. 35(4), pages 455-473, December.
    15. C. Horan, 1969. "Multidimensional scaling: Combining observations when individuals have different perceptual structures," Psychometrika, Springer;The Psychometric Society, vol. 34(2), pages 139-165, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richard Sands & Forrest Young, 1980. "Component models for three-way data: An alternating least squares algorithm with optimal scaling features," Psychometrika, Springer;The Psychometric Society, vol. 45(1), pages 39-67, March.
    2. J. Carroll, 1985. "Review," Psychometrika, Springer;The Psychometric Society, vol. 50(1), pages 133-140, March.
    3. Jacqueline Meulman & Peter Verboon, 1993. "Points of view analysis revisited: Fitting multidimensional structures to optimal distance components with cluster restrictions on the variables," Psychometrika, Springer;The Psychometric Society, vol. 58(1), pages 7-35, March.
    4. Martin Young & Wayne DeSarbo, 1995. "A parametric procedure for ultrametric tree estimation from conditional rank order proximity data," Psychometrika, Springer;The Psychometric Society, vol. 60(1), pages 47-75, March.
    5. Roger Girard & Norman Cliff, 1976. "A monte carlo evaluation of interactive multidimensional scaling," Psychometrika, Springer;The Psychometric Society, vol. 41(1), pages 43-64, March.
    6. Abe, Makoto, 1998. "Error structure and identification condition in maximum likelihood nonmetric multidimensional scaling," European Journal of Operational Research, Elsevier, vol. 111(2), pages 216-227, December.
    7. Warren Torgerson, 1986. "Scaling and Psychometrika: Spatial and alternative representations of similarity data," Psychometrika, Springer;The Psychometric Society, vol. 51(1), pages 57-63, March.
    8. Venera Tomaselli, 1996. "Multivariate statistical techniques and sociological research," Quality & Quantity: International Journal of Methodology, Springer, vol. 30(3), pages 253-276, August.
    9. Maital, Shlomo, 1976. "Multidimensional Scaling: Some Economic Applications," Foerder Institute for Economic Research Working Papers 275316, Tel-Aviv University > Foerder Institute for Economic Research.
    10. Akinori Okada & Tadashi Imaizumi, 1997. "Asymmetric multidimensional scaling of two-mode three-way proximities," Journal of Classification, Springer;The Classification Society, vol. 14(2), pages 195-224, September.
    11. C. Horan, 1969. "Multidimensional scaling: Combining observations when individuals have different perceptual structures," Psychometrika, Springer;The Psychometric Society, vol. 34(2), pages 139-165, June.
    12. Mariela González-Narváez & María José Fernández-Gómez & Susana Mendes & José-Luis Molina & Omar Ruiz-Barzola & Purificación Galindo-Villardón, 2021. "Study of Temporal Variations in Species–Environment Association through an Innovative Multivariate Method: MixSTATICO," Sustainability, MDPI, vol. 13(11), pages 1-25, May.
    13. Elisa Frutos-Bernal & Ángel Martín del Rey & Irene Mariñas-Collado & María Teresa Santos-Martín, 2022. "An Analysis of Travel Patterns in Barcelona Metro Using Tucker3 Decomposition," Mathematics, MDPI, vol. 10(7), pages 1-17, March.
    14. Robert MacCallum & Edwin Cornelius, 1977. "A monte carlo investigation of recovery of structure by alscal," Psychometrika, Springer;The Psychometric Society, vol. 42(3), pages 401-428, September.
    15. Ingwer Borg & James Lingoes, 1978. "What weight should weights have in individual differences scaling?," Quality & Quantity: International Journal of Methodology, Springer, vol. 12(3), pages 223-237, September.
    16. Peter Schönemann, 1968. "On two-sided orthogonal procrustes problems," Psychometrika, Springer;The Psychometric Society, vol. 33(1), pages 19-33, March.
    17. Paolo Giordani & Roberto Rocci & Giuseppe Bove, 2020. "Factor Uniqueness of the Structural Parafac Model," Psychometrika, Springer;The Psychometric Society, vol. 85(3), pages 555-574, September.
    18. Alwin Stegeman & Tam Lam, 2014. "Three-Mode Factor Analysis by Means of Candecomp/Parafac," Psychometrika, Springer;The Psychometric Society, vol. 79(3), pages 426-443, July.
    19. Jerzy Grobelny & Rafal Michalski & Gerhard-Wilhelm Weber, 2021. "Modeling human thinking about similarities by neuromatrices in the perspective of fuzzy logic," WORking papers in Management Science (WORMS) WORMS/21/09, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
    20. Giuseppe Bove & Akinori Okada, 2018. "Methods for the analysis of asymmetric pairwise relationships," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(1), pages 5-31, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:42:y:1977:i:1:p:7-67. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.