IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v358y2024ics0306261923019566.html
   My bibliography  Save this article

Auction-based peer-to-peer energy trading considering echelon utilization of retired electric vehicle second-life batteries

Author

Listed:
  • Zhang, Chenxi
  • Yang, Yi
  • Wang, Yunqi
  • Qiu, Jing
  • Zhao, Junhua

Abstract

Lately, the growing emergence of electric vehicles (EVs) brings problems of retired batteries proliferation. Seeking effective application scenarios targeting echelon utilization of retired EV second-life batteries (EVSLBs) becomes important. This paper proposes an auction-based P2P energy trading approach in a residential community market that incorporates retired EVSLBs utilization. A unified P2P energy trading model is proposed to coordinate the economic layer and the physical layer. In the economic layer, the household energy management system (HEMS) of each agent is in charge of operating and market bidding through optimization models to maximize their net profit. Comprehensive operation models of fresh batteries and retired EVSLBs have been proposed and embedded into HEMS models. The battery life degradation issue is also considered by calculating the cycling cost. The P2P energy trading is conducted by a double-sided auction method with an average pricing market (APM) mechanism, in which the re-bidding process is allowed. In the physical layer, voltage issues and line congestion management are considered. There is a community manager in the P2P market to ensure the economic layer decisions do not violate the constraints in the physical layer. The proposed models are tested on the modified IEEE 33-bus distribution system and the comparison between new batteries and retired EVSLBs in the community market is discussed based on the simulation results. The echelon utilization effectiveness of EVSLBs in residential P2P trading has been verified as well.

Suggested Citation

  • Zhang, Chenxi & Yang, Yi & Wang, Yunqi & Qiu, Jing & Zhao, Junhua, 2024. "Auction-based peer-to-peer energy trading considering echelon utilization of retired electric vehicle second-life batteries," Applied Energy, Elsevier, vol. 358(C).
  • Handle: RePEc:eee:appene:v:358:y:2024:i:c:s0306261923019566
    DOI: 10.1016/j.apenergy.2023.122592
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923019566
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122592?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steckel, Tobiah & Kendall, Alissa & Ambrose, Hanjiro, 2021. "Applying levelized cost of storage methodology to utility-scale second-life lithium-ion battery energy storage systems," Applied Energy, Elsevier, vol. 300(C).
    2. Guerrero, Jaysson & Gebbran, Daniel & Mhanna, Sleiman & Chapman, Archie C. & Verbič, Gregor, 2020. "Towards a transactive energy system for integration of distributed energy resources: Home energy management, distributed optimal power flow, and peer-to-peer energy trading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    3. Sousa, Tiago & Soares, Tiago & Pinson, Pierre & Moret, Fabio & Baroche, Thomas & Sorin, Etienne, 2019. "Peer-to-peer and community-based markets: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 367-378.
    4. Wang, Jianxiao & Zhong, Haiwang & Wu, Chenye & Du, Ershun & Xia, Qing & Kang, Chongqing, 2019. "Incentivizing distributed energy resource aggregation in energy and capacity markets: An energy sharing scheme and mechanism design," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kisal Kawshika Gunawardana Hathamune Liyanage & Shama Naz Islam, 2024. "Comparative Analysis of Market Clearing Mechanisms for Peer-to-Peer Energy Market Based on Double Auction," Energies, MDPI, vol. 17(22), pages 1-17, November.
    2. Yiming Xu & Ali Alderete Peralta & Nazmiye Balta-Ozkan, 2024. "Vehicle-to-Vehicle Energy Trading Framework: A Systematic Literature Review," Sustainability, MDPI, vol. 16(12), pages 1-28, June.
    3. Md Sahabul Hossain & Craig Rodine & Eirini Eleni Tsiropoulou, 2024. "A Blockchain and PKI-Based Secure Vehicle-to-Vehicle Energy-Trading Protocol," Energies, MDPI, vol. 17(17), pages 1-52, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K. & Yuen, Chau & Smith, David, 2022. "Peer-to-peer kilowatt and negawatt trading: A review of challenges and recent advances in distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    2. Tushar, Wayes & Yuen, Chau & Saha, Tapan K. & Morstyn, Thomas & Chapman, Archie C. & Alam, M. Jan E. & Hanif, Sarmad & Poor, H. Vincent, 2021. "Peer-to-peer energy systems for connected communities: A review of recent advances and emerging challenges," Applied Energy, Elsevier, vol. 282(PA).
    3. Zhou, Yuekuan & Lund, Peter D., 2023. "Peer-to-peer energy sharing and trading of renewable energy in smart communities ─ trading pricing models, decision-making and agent-based collaboration," Renewable Energy, Elsevier, vol. 207(C), pages 177-193.
    4. Nieta, Agustín A. Sánchez de la & Ilieva, Iliana & Gibescu, Madeleine & Bremdal, Bernt & Simonsen, Stig & Gramme, Eivind, 2021. "Optimal midterm peak shaving cost in an electricity management system using behind customers’ smart meter configuration," Applied Energy, Elsevier, vol. 283(C).
    5. Vinyals, Meritxell, 2021. "Scalable multi-agent local energy trading — Meeting regulatory compliance and validation in the Cardiff grid," Applied Energy, Elsevier, vol. 298(C).
    6. Charbonnier, Flora & Morstyn, Thomas & McCulloch, Malcolm D., 2022. "Coordination of resources at the edge of the electricity grid: Systematic review and taxonomy," Applied Energy, Elsevier, vol. 318(C).
    7. Nizami, Sohrab & Tushar, Wayes & Hossain, M.J. & Yuen, Chau & Saha, Tapan & Poor, H. Vincent, 2022. "Transactive energy for low voltage residential networks: A review," Applied Energy, Elsevier, vol. 323(C).
    8. Mohamed, Mohamed A., 2022. "A relaxed consensus plus innovation based effective negotiation approach for energy cooperation between smart grid and microgrid," Energy, Elsevier, vol. 252(C).
    9. Hahnel, Ulf J.J. & Fell, Michael J., 2022. "Pricing decisions in peer-to-peer and prosumer-centred electricity markets: Experimental analysis in Germany and the United Kingdom," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    10. Xia, Yuanxing & Xu, Qingshan & Chen, Lu & Du, Pengwei, 2022. "The flexible roles of distributed energy storages in peer-to-peer transactive energy market: A state-of-the-art review," Applied Energy, Elsevier, vol. 327(C).
    11. Tsaousoglou, Georgios & Giraldo, Juan S. & Paterakis, Nikolaos G., 2022. "Market Mechanisms for Local Electricity Markets: A review of models, solution concepts and algorithmic techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    12. Alonso Pedrero, Raquel & Crespo del Granado, Pedro, 2023. "Assessing the impact of energy communities on retailers’ balancing positions in the power market," Energy, Elsevier, vol. 283(C).
    13. Dynge, Marthe Fogstad & Crespo del Granado, Pedro & Hashemipour, Naser & Korpås, Magnus, 2021. "Impact of local electricity markets and peer-to-peer trading on low-voltage grid operations," Applied Energy, Elsevier, vol. 301(C).
    14. Roth, Tamara & Utz, Manuel & Baumgarte, Felix & Rieger, Alexander & Sedlmeir, Johannes & Strüker, Jens, 2022. "Electricity powered by blockchain: A review with a European perspective," Applied Energy, Elsevier, vol. 325(C).
    15. Gorbatcheva, Anna & Watson, Nicole & Schneiders, Alexandra & Shipworth, David & Fell, Michael J., 2024. "Defining characteristics of peer-to-peer energy trading, transactive energy, and community self-consumption: A review of literature and expert perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    16. Guerrero, Jaysson & Sok, Bunyim & Chapman, Archie C. & Verbič, Gregor, 2021. "Electrical-distance driven peer-to-peer energy trading in a low-voltage network," Applied Energy, Elsevier, vol. 287(C).
    17. Carattini, Stefano & Gillingham, Kenneth & Meng, Xiangyu & Yoeli, Erez, 2024. "Peer-to-peer solar and social rewards: Evidence from a field experiment," Journal of Economic Behavior & Organization, Elsevier, vol. 219(C), pages 340-370.
    18. Wang, Dongxue & Fan, Ruguo & Yang, Peiwen & Du, Kang & Xu, Xiaoxia & Chen, Rongkai, 2024. "Research on floating real-time pricing strategy for microgrid operator in local energy market considering shared energy storage leasing," Applied Energy, Elsevier, vol. 368(C).
    19. Mukherjee, Monish & Hardy, Trevor & Fuller, Jason C. & Bose, Anjan, 2022. "Implementing multi-settlement decentralized electricity market design for transactive communities with imperfect communication," Applied Energy, Elsevier, vol. 306(PA).
    20. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:358:y:2024:i:c:s0306261923019566. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.