IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v573y2019i7774d10.1038_s41586-019-1544-1.html
   My bibliography  Save this article

Intrinsically stable organic solar cells under high-intensity illumination

Author

Listed:
  • Quinn Burlingame

    (University of Michigan)

  • Xiaheng Huang

    (University of Michigan)

  • Xiao Liu

    (University of Michigan)

  • Changyeong Jeong

    (University of Michigan)

  • Caleb Coburn

    (University of Michigan)

  • Stephen R. Forrest

    (University of Michigan
    University of Michigan
    University of Michigan)

Abstract

Organic photovoltaic cells are now approaching commercially viable efficiencies, particularly for applications that make use of their unique potential for flexibility and semitransparency1–3. However, their reliability remains a major concern, as even the most stable devices reported so far degrade within only a few years4–8. This has led to the belief that short operational lifetimes are an intrinsic disadvantage of devices that are fabricated using weakly bonded organic materials—an idea that persists despite the rapid growth and acceptance of organic light-emitting devices, which can achieve lifetimes of several million hours9. Here we study an extremely stable class of thermally evaporated single-junction organic photovoltaic cells. We accelerated the ageing process by exposing the packaged cells to white-light illumination intensities of up to 37 Suns. The cells maintained more than 87 per cent of their starting efficiency after exposure for more than 68 days. The degradation rate increases superlinearly with intensity, leading to an extrapolated intrinsic lifetime, T80, of more than 4.9 × 107 hours, where T80 is the time taken for the power conversion efficiency to decrease to 80 per cent of its initial value. This is equivalent to 27,000 years outdoors. Additionally, we subjected a second group of organic photovoltaic cells to 20 Suns of ultraviolet illumination (centred at 365 nanometres) for 848 hours, a dose that would take 1.7 × 104 hours (9.3 years) to accumulate outdoors. No efficiency loss was observed over the duration of the test. Overall, we find that organic solar cells packaged in an inert atmosphere can be extremely stable, which is promising for their future use as a practical energy-generation technology.

Suggested Citation

  • Quinn Burlingame & Xiaheng Huang & Xiao Liu & Changyeong Jeong & Caleb Coburn & Stephen R. Forrest, 2019. "Intrinsically stable organic solar cells under high-intensity illumination," Nature, Nature, vol. 573(7774), pages 394-397, September.
  • Handle: RePEc:nat:nature:v:573:y:2019:i:7774:d:10.1038_s41586-019-1544-1
    DOI: 10.1038/s41586-019-1544-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1544-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1544-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pin Wang & Mengfan Xue & Dongjian Jiang & Yanliang Yang & Junzhe Zhang & Hongzheng Dong & Gengzhi Sun & Yingfang Yao & Wenjun Luo & Zhigang Zou, 2022. "Photovoltage memory effect in a portable Faradaic junction solar rechargeable device," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Yilei Wu & Yue Yuan & Diego Sorbelli & Christina Cheng & Lukas Michalek & Hao-Wen Cheng & Vishal Jindal & Song Zhang & Garrett LeCroy & Enrique D. Gomez & Scott T. Milner & Alberto Salleo & Giulia Gal, 2024. "Tuning polymer-backbone coplanarity and conformational order to achieve high-performance printed all-polymer solar cells," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Junsheng Luo & Bowen Liu & Haomiao Yin & Xin Zhou & Mingjian Wu & Hongyang Shi & Jiyun Zhang & Jack Elia & Kaicheng Zhang & Jianchang Wu & Zhiqiang Xie & Chao Liu & Junyu Yuan & Zhongquan Wan & Thomas, 2024. "Polymer-acid-metal quasi-ohmic contact for stable perovskite solar cells beyond a 20,000-hour extrapolated lifetime," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Nieto-Díaz, Balder A. & Crossland, Andrew F. & Groves, Christopher, 2021. "A levelized cost of energy approach to select and optimise emerging PV technologies: The relative impact of degradation, cost and initial efficiency," Applied Energy, Elsevier, vol. 299(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:573:y:2019:i:7774:d:10.1038_s41586-019-1544-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.