IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v32y2007i5p755-759.html
   My bibliography  Save this article

An investigation of mismatch losses in solar photovoltaic cell networks

Author

Listed:
  • Kaushika, N.D.
  • Rai, Anil K.

Abstract

Solar photovoltaic (PV) arrays in field conditions deliver lower power than the array rating. In this paper, the sensitivity of solar cell parameters in the variation of available power from the array is investigated. The parameters characteristic of aging and fresh cells used in prototype field systems have been used for computation of reduction in the available power. It is found that in series string the fractional power loss would increase from 2% to 12% with aging of solar cells. However, this fractional power loss may be reduced to 0.4–2.4% by an appropriate series-paralleling.

Suggested Citation

  • Kaushika, N.D. & Rai, Anil K., 2007. "An investigation of mismatch losses in solar photovoltaic cell networks," Energy, Elsevier, vol. 32(5), pages 755-759.
  • Handle: RePEc:eee:energy:v:32:y:2007:i:5:p:755-759
    DOI: 10.1016/j.energy.2006.06.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544206001423
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2006.06.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rehman, Shafiqur & El-Amin, Ibrahim, 2012. "Performance evaluation of an off-grid photovoltaic system in Saudi Arabia," Energy, Elsevier, vol. 46(1), pages 451-458.
    2. Siaw, Fei-Lu & Chong, Kok-Keong & Wong, Chee-Woon, 2014. "A comprehensive study of dense-array concentrator photovoltaic system using non-imaging planar concentrator," Renewable Energy, Elsevier, vol. 62(C), pages 542-555.
    3. Zhang, Xiaoshun & Meng, Die & Cai, Jiahui & Zhang, Guiyuan & Yu, Tao & Pan, Feng & Yang, Yuyao, 2023. "A swarm based double Q-learning for optimal PV array reconfiguration with a coordinated control of hydrogen energy storage system," Energy, Elsevier, vol. 266(C).
    4. Jong Rok Lim & Sihan Kim & Hyung-Keun Ahn & Hee-Eun Song & Gi Hwan Kang, 2019. "Analysis of the Bowing Phenomenon for Thin c-Si Solar Cells using Partially Processed c-Si Solar Cells," Energies, MDPI, vol. 12(9), pages 1-12, April.
    5. Kurt Michael Coetzer & Arnold Johan Rix & Pieter Gideon Wiid, 2022. "The Measurement and SPICE Modelling of Schottky Barrier Diodes Appropriate for Use as Bypass Diodes within Photovoltaic Modules," Energies, MDPI, vol. 15(13), pages 1-30, June.
    6. Potnuru, Srinivasa Rao & Pattabiraman, Dinesh & Ganesan, Saravana Ilango & Chilakapati, Nagamani, 2015. "Positioning of PV panels for reduction in line losses and mismatch losses in PV array," Renewable Energy, Elsevier, vol. 78(C), pages 264-275.
    7. Jeong Eun Park & Won Seok Choi & Dong Gun Lim, 2021. "Multi-Wire Interconnection of Busbarless Solar Cells with Embedded Electrode Sheet," Energies, MDPI, vol. 14(13), pages 1-19, July.
    8. Romênia G. Vieira & Fábio M. U. de Araújo & Mahmoud Dhimish & Maria I. S. Guerra, 2020. "A Comprehensive Review on Bypass Diode Application on Photovoltaic Modules," Energies, MDPI, vol. 13(10), pages 1-21, May.
    9. Marco Balato & Annalisa Liccardo & Carlo Petrarca, 2020. "Dynamic Boost Based DMPPT Emulator," Energies, MDPI, vol. 13(11), pages 1-16, June.
    10. Zhenghai Liao & Dazheng Wang & Liangliang Tang & Jinli Ren & Zhuming Liu, 2017. "A Heuristic Diagnostic Method for a PV System: Triple-Layered Particle Swarm Optimization–Back-Propagation Neural Network," Energies, MDPI, vol. 10(2), pages 1-11, February.
    11. Ma, Tao & Guo, Zichang & Shen, Lu & Liu, Xing & Chen, Zhenwu & Zhou, Yong & Zhang, Xiaochun, 2021. "Performance modelling of photovoltaic modules under actual operating conditions considering loss mechanism and energy distribution," Applied Energy, Elsevier, vol. 298(C).
    12. Yue, Gentian & Wu, Jihuai & Xiao, Yaoming & Lin, Jianming & Huang, Miaoliang & Lan, Zhang & Fan, Leqing, 2013. "Functionalized graphene/poly(3,4-ethylenedioxythiophene):polystyrenesulfonate as counter electrode catalyst for dye-sensitized solar cells," Energy, Elsevier, vol. 54(C), pages 315-321.
    13. Shen, Lu & Li, Zhenpeng & Ma, Tao, 2020. "Analysis of the power loss and quantification of the energy distribution in PV module," Applied Energy, Elsevier, vol. 260(C).
    14. Carrero, C. & Ramirez, D. & Rodríguez, J. & Castillo-Sierra, R., 2021. "Sensitivity analysis of loss resistances variations of PV generators applied to the assessment of maximum power point changes due to degradation," Renewable Energy, Elsevier, vol. 173(C), pages 351-361.
    15. Claus, R. & López, M., 2022. "Key issues in the design of floating photovoltaic structures for the marine environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    16. Daraban, Stefan & Petreus, Dorin & Morel, Cristina, 2014. "A novel MPPT (maximum power point tracking) algorithm based on a modified genetic algorithm specialized on tracking the global maximum power point in photovoltaic systems affected by partial shading," Energy, Elsevier, vol. 74(C), pages 374-388.
    17. Dobaria, Bhaveshkumar & Pandya, Mahesh & Aware, Mohan, 2016. "Analytical assessment of 5.05 kWp grid tied photovoltaic plant performance on the system level in a composite climate of western India," Energy, Elsevier, vol. 111(C), pages 47-51.
    18. Wang, Ao & Xuan, Yimin, 2018. "A detailed study on loss processes in solar cells," Energy, Elsevier, vol. 144(C), pages 490-500.
    19. Ahmed Al Mansur & Md. Ruhul Amin & Kazi Khairul Islam, 2019. "Performance Comparison of Mismatch Power Loss Minimization Techniques in Series-Parallel PV Array Configurations," Energies, MDPI, vol. 12(5), pages 1-21, March.
    20. Wang, Yaw-Juen & Hsu, Po-Chun, 2011. "An investigation on partial shading of PV modules with different connection configurations of PV cells," Energy, Elsevier, vol. 36(5), pages 3069-3078.
    21. Ayompe, L.M. & Duffy, A. & McCormack, S.J. & Conlon, M., 2010. "Validated real-time energy models for small-scale grid-connected PV-systems," Energy, Elsevier, vol. 35(10), pages 4086-4091.
    22. Jiang, Joe-Air & Wang, Jen-Cheng & Kuo, Kun-Chang & Su, Yu-Li & Shieh, Jyh-Cherng & Chou, Jui-Jen, 2012. "Analysis of the junction temperature and thermal characteristics of photovoltaic modules under various operation conditions," Energy, Elsevier, vol. 44(1), pages 292-301.
    23. Han, Changwoon & Lee, Hyeonseok, 2018. "Investigation and modeling of long-term mismatch loss of photovoltaic array," Renewable Energy, Elsevier, vol. 121(C), pages 521-527.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:32:y:2007:i:5:p:755-759. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.