IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v173y2021icp1111-1122.html
   My bibliography  Save this article

Experimental investigation of the bifacial photovoltaic module under real conditions

Author

Listed:
  • Gu, Wenbo
  • Li, Senji
  • Liu, Xing
  • Chen, Zhenwu
  • Zhang, Xiaochun
  • Ma, Tao

Abstract

In this study, the bifacial photovoltaic (bPV) and mono-facial photovoltaic (mPV) modules, with similar structure, are employed to validate the previously developed coupled model, and also to estimate the onsite bPV performance. Besides, the daily bPV and mPV electrical and thermal performances are measured and compared under the same conditions. Results show that the bPV module outperforms the mPV module obviously and the average daily bifacial gain is 13.08% and 16.54% for the sunny and cloudy days, respectively, demonstrating that the bPV technology has an obvious advantage in adapting to various weather conditions, especially under low irradiance. For the thermal performance, the temperature of the bPV cells is higher than the mPV under high irradiance but lower under low irradiance. In addition, weekly performance evaluations for the bPV module are also conducted. Results show that the daily bifacial gain for the bPV module ranges from 12.94% to 16.94% and thus the weekly bifacial gain of 14.54% can be achieved. Furthermore, some suggestions are provided for achieving higher bPV power output by investigating the effects of albedo, tilt angle and orientation on the bPV performance. It is recommended to install a bPV module on the high albedo ground, with a tracking technology at an optimum tilt angle to obtain high power output. Finally, long-term predictions of the bPV performance are performed, illustrating that the yearly bifacial gain, array yield, production factor and energy efficiency is up to 14.77%, 3.76 h/d, 87.23% and 17.20%, respectively.

Suggested Citation

  • Gu, Wenbo & Li, Senji & Liu, Xing & Chen, Zhenwu & Zhang, Xiaochun & Ma, Tao, 2021. "Experimental investigation of the bifacial photovoltaic module under real conditions," Renewable Energy, Elsevier, vol. 173(C), pages 1111-1122.
  • Handle: RePEc:eee:renene:v:173:y:2021:i:c:p:1111-1122
    DOI: 10.1016/j.renene.2020.12.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120319509
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.12.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gu, Wenbo & Ma, Tao & Shen, Lu & Li, Meng & Zhang, Yijie & Zhang, Wenjie, 2019. "Coupled electrical-thermal modelling of photovoltaic modules under dynamic conditions," Energy, Elsevier, vol. 188(C).
    2. Ma, Tao & Yang, Hongxing & Lu, Lin, 2014. "Solar photovoltaic system modeling and performance prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 304-315.
    3. Sun, Xingshu & Khan, Mohammad Ryyan & Deline, Chris & Alam, Muhammad Ashraful, 2018. "Optimization and performance of bifacial solar modules: A global perspective," Applied Energy, Elsevier, vol. 212(C), pages 1601-1610.
    4. Sharma, Rakhi & Tiwari, G.N., 2012. "Technical performance evaluation of stand-alone photovoltaic array for outdoor field conditions of New Delhi," Applied Energy, Elsevier, vol. 92(C), pages 644-652.
    5. Sun, Liangliang & Lu, Lin & Yang, Hongxing, 2012. "Optimum design of shading-type building-integrated photovoltaic claddings with different surface azimuth angles," Applied Energy, Elsevier, vol. 90(1), pages 233-240.
    6. Noorian, Ali Mohammad & Moradi, Isaac & Kamali, Gholam Ali, 2008. "Evaluation of 12 models to estimate hourly diffuse irradiation on inclined surfaces," Renewable Energy, Elsevier, vol. 33(6), pages 1406-1412.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Naixin & Gu, Wenbo & Zheng, Zipeng & Ma, Tao, 2023. "Multi-objective bi-level planning of the integrated energy system considering uncertain user loads and carbon emission during the equipment manufacturing process," Renewable Energy, Elsevier, vol. 216(C).
    2. Yecid Mu oz & Miguel De La Rosa & Leidy Carolina Acevedo & Wilmer Velandia, 2023. "Technical and Financial Assessment of Photovoltaic Solar Systems with Bifacial Technology Comparing Four Scenarios with Different Albedos with Respect to the Base Scenario with Monofacial Technology, ," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 389-393, July.
    3. Emad M. Ahmed & Mokhtar Aly & Manar Mostafa & Hegazy Rezk & Hammad Alnuman & Waleed Alhosaini, 2022. "An Accurate Model for Bifacial Photovoltaic Panels," Sustainability, MDPI, vol. 15(1), pages 1-27, December.
    4. Amir A. Abdallah & Maulid Kivambe & Brahim Aïssa & Benjamin W. Figgis, 2023. "Performance of Monofacial and Bifacial Silicon Heterojunction Modules under Desert Conditions and the Impact of PV Soiling," Sustainability, MDPI, vol. 15(10), pages 1-13, May.
    5. Zhong, Jianmei & Zhang, Wei & Xie, Lingzhi & Zhao, Oufan & Wu, Xin & Zeng, Xiding & Guo, Jiahong, 2023. "Development and challenges of bifacial photovoltaic technology and application in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gu, Wenbo & Ma, Tao & Li, Meng & Shen, Lu & Zhang, Yijie, 2020. "A coupled optical-electrical-thermal model of the bifacial photovoltaic module," Applied Energy, Elsevier, vol. 258(C).
    2. Zhong, Jianmei & Zhang, Wei & Xie, Lingzhi & Zhao, Oufan & Wu, Xin & Zeng, Xiding & Guo, Jiahong, 2023. "Development and challenges of bifacial photovoltaic technology and application in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    3. Ma, Tao & Guo, Zichang & Shen, Lu & Liu, Xing & Chen, Zhenwu & Zhou, Yong & Zhang, Xiaochun, 2021. "Performance modelling of photovoltaic modules under actual operating conditions considering loss mechanism and energy distribution," Applied Energy, Elsevier, vol. 298(C).
    4. Mulcué-Nieto, Luis Fernando & Mora-López, Llanos, 2015. "Methodology to establish the permitted maximum losses due to shading and orientation in photovoltaic applications in buildings," Applied Energy, Elsevier, vol. 137(C), pages 37-45.
    5. Zhang, Yijie & Ma, Tao & Yang, Hongxing, 2022. "Grid-connected photovoltaic battery systems: A comprehensive review and perspectives," Applied Energy, Elsevier, vol. 328(C).
    6. Zhang, Yijie & Ma, Tao & Yang, Hongxing & Li, Zongyu & Wang, Yuhong, 2023. "Simulation and experimental study on the energy performance of a pre-fabricated photovoltaic pavement," Applied Energy, Elsevier, vol. 342(C).
    7. Chinchilla, Monica & Santos-Martín, David & Carpintero-Rentería, Miguel & Lemon, Scott, 2021. "Worldwide annual optimum tilt angle model for solar collectors and photovoltaic systems in the absence of site meteorological data," Applied Energy, Elsevier, vol. 281(C).
    8. Hafez, A.Z. & Soliman, A. & El-Metwally, K.A. & Ismail, I.M., 2017. "Tilt and azimuth angles in solar energy applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 147-168.
    9. Roberts, Justo José & Mendiburu Zevallos, Andrés A. & Cassula, Agnelo Marotta, 2017. "Assessment of photovoltaic performance models for system simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1104-1123.
    10. Sun, Bo & Lu, Lin & Yuan, Yanping & Ocłoń, Paweł, 2023. "Development and validation of a concise and anisotropic irradiance model for bifacial photovoltaic modules," Renewable Energy, Elsevier, vol. 209(C), pages 442-452.
    11. Mehleri, E.D. & Zervas, P.L. & Sarimveis, H. & Palyvos, J.A. & Markatos, N.C., 2010. "A new neural network model for evaluating the performance of various hourly slope irradiation models: Implementation for the region of Athens," Renewable Energy, Elsevier, vol. 35(7), pages 1357-1362.
    12. Eke, Rustu & Senturk, Ali, 2013. "Monitoring the performance of single and triple junction amorphous silicon modules in two building integrated photovoltaic (BIPV) installations," Applied Energy, Elsevier, vol. 109(C), pages 154-162.
    13. Zimmerman, Ryan & Panda, Anurag & Bulović, Vladimir, 2020. "Techno-economic assessment and deployment strategies for vertically-mounted photovoltaic panels," Applied Energy, Elsevier, vol. 276(C).
    14. Li, Zhenpeng & Ma, Tao & Zhao, Jiaxin & Song, Aotian & Cheng, Yuanda, 2019. "Experimental study and performance analysis on solar photovoltaic panel integrated with phase change material," Energy, Elsevier, vol. 178(C), pages 471-486.
    15. Ma, Tao & Li, Meng & Kazemian, Arash, 2020. "Photovoltaic thermal module and solar thermal collector connected in series to produce electricity and high-grade heat simultaneously," Applied Energy, Elsevier, vol. 261(C).
    16. Taveres-Cachat, Ellika & Lobaccaro, Gabriele & Goia, Francesco & Chaudhary, Gaurav, 2019. "A methodology to improve the performance of PV integrated shading devices using multi-objective optimization," Applied Energy, Elsevier, vol. 247(C), pages 731-744.
    17. Mahmoudimehr, Javad & Shabani, Masoume, 2018. "Optimal design of hybrid photovoltaic-hydroelectric standalone energy system for north and south of Iran," Renewable Energy, Elsevier, vol. 115(C), pages 238-251.
    18. Ma, Tao & Zhao, Jiaxin & Li, Zhenpeng, 2018. "Mathematical modelling and sensitivity analysis of solar photovoltaic panel integrated with phase change material," Applied Energy, Elsevier, vol. 228(C), pages 1147-1158.
    19. Manfredi Picciotto Maniscalco & Sonia Longo & Gabriele Miccichè & Maurizio Cellura & Marco Ferraro, 2023. "A Critical Review of the Environmental Performance of Bifacial Photovoltaic Panels," Energies, MDPI, vol. 17(1), pages 1-18, December.
    20. Senturk, Ali, 2020. "Investigation of datasheet provided temperature coefficients of photovoltaic modules under various sky profiles at the field by applying a new validation procedure," Renewable Energy, Elsevier, vol. 152(C), pages 644-652.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:173:y:2021:i:c:p:1111-1122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.