IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v250y2019icp1110-1119.html
   My bibliography  Save this article

Annual electricity consumption prediction and future expansion analysis on dairy farms using a support vector machine

Author

Listed:
  • Shine, P.
  • Scully, T.
  • Upton, J.
  • Murphy, M.D.

Abstract

This study utilised a previously developed support vector machine (SVM) (trained using empirical data from 56 dairy farms) for predicting and analysing annual dairy farm electricity consumption to help improve the sustainability of the projected expansion of milk production in Ireland. Firstly, the capability of the SVM to predict annual electricity consumption was investigated at both a farm and catchment-level (combined consumption). Electricity consumption data were attained from 16 pasture-based, Irish dairy farms between June 2016 and May 2017 in conjunction with farm data related to herd size, milk production, infrastructural equipment and managerial tendencies, required to generate predictions using the SVM. The SVM predicted annual electricity consumption of dairy farms to within 10.4% (relative prediction error). Concurrently, catchment-level electricity consumption was predicted with an error value less than 5.0%. Secondly, an investigation was carried out to assess the impact of increasing herd size and milk production on dairy farm related electricity consumption at a catchment-level across ten hypothetical infrastructural scenarios. The dairy expansion analysis showed electricity economies of scale across all ten infrastructural scenarios. The greatest reduction in electricity consumption per litre was observed when all farms employed ground water for pre-cooling milk with two additional parlour units, reducing by 4% in 2018, relative to a base scenario (no change to infrastructural equipment). The results presented in this article demonstrate the potential effectiveness of the SVM as a macro-level simulation forecast tool for dairy farm electricity consumption that may be used to quantify the impact of milk production on electricity resources, or to offer decision support to dairy farmers.

Suggested Citation

  • Shine, P. & Scully, T. & Upton, J. & Murphy, M.D., 2019. "Annual electricity consumption prediction and future expansion analysis on dairy farms using a support vector machine," Applied Energy, Elsevier, vol. 250(C), pages 1110-1119.
  • Handle: RePEc:eee:appene:v:250:y:2019:i:c:p:1110-1119
    DOI: 10.1016/j.apenergy.2019.05.103
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919309626
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.05.103?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jig Han Jeong & Jonathan P Resop & Nathaniel D Mueller & David H Fleisher & Kyungdahm Yun & Ethan E Butler & Dennis J Timlin & Kyo-Moon Shim & James S Gerber & Vangimalla R Reddy & Soo-Hyung Kim, 2016. "Random Forests for Global and Regional Crop Yield Predictions," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-15, June.
    2. Paria Sefeedpari & Shahin Rafiee & Asadollah Akram, 2013. "Application of artificial neural network to model the energy output of dairy farms in Iran," International Journal of Energy Technology and Policy, Inderscience Enterprises Ltd, vol. 9(1), pages 82-91.
    3. Shine, P. & Scully, T. & Upton, J. & Shalloo, L. & Murphy, M.D., 2018. "Electricity & direct water consumption on Irish pasture based dairy farms: A statistical analysis," Applied Energy, Elsevier, vol. 210(C), pages 529-537.
    4. Murphy, M.D. & O’Mahony, M.J. & Upton, J., 2015. "Comparison of control systems for the optimisation of ice storage in a dynamic real time electricity pricing environment," Applied Energy, Elsevier, vol. 149(C), pages 392-403.
    5. Finn, Paddy & Fitzpatrick, Colin, 2014. "Demand side management of industrial electricity consumption: Promoting the use of renewable energy through real-time pricing," Applied Energy, Elsevier, vol. 113(C), pages 11-21.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
    2. Chen, Ying & Koch, Thorsten & Zakiyeva, Nazgul & Zhu, Bangzhu, 2020. "Modeling and forecasting the dynamics of the natural gas transmission network in Germany with the demand and supply balance constraint," Applied Energy, Elsevier, vol. 278(C).
    3. Dai, Yeming & Zhao, Pei, 2020. "A hybrid load forecasting model based on support vector machine with intelligent methods for feature selection and parameter optimization," Applied Energy, Elsevier, vol. 279(C).
    4. Boza, Pal & Evgeniou, Theodoros, 2021. "Artificial intelligence to support the integration of variable renewable energy sources to the power system," Applied Energy, Elsevier, vol. 290(C).
    5. Chen, Zhiwei & Zhao, Weicheng & Lin, Xiaoyong & Han, Yongming & Hu, Xuan & Yuan, Kui & Geng, Zhiqiang, 2024. "Load prediction of integrated energy systems for energy saving and carbon emission based on novel multi-scale fusion convolutional neural network," Energy, Elsevier, vol. 290(C).
    6. Tang, Ruoli & Lin, Qiao & Zhou, Jinxiang & Zhang, Shangyu & Lai, Jingang & Li, Xin & Dong, Zhengcheng, 2020. "Suppression strategy of short-term and long-term environmental disturbances for maritime photovoltaic system," Applied Energy, Elsevier, vol. 259(C).
    7. Atif Maqbool Khan & Artur Wyrwa, 2024. "A Survey of Quantitative Techniques in Electricity Consumption—A Global Perspective," Energies, MDPI, vol. 17(19), pages 1-38, September.
    8. Zeng, Sheng & Su, Bin & Zhang, Minglong & Gao, Yuan & Liu, Jun & Luo, Song & Tao, Qingmei, 2021. "Analysis and forecast of China's energy consumption structure," Energy Policy, Elsevier, vol. 159(C).
    9. Wang, Kang & Wang, Jianzhou & Zeng, Bo & Lu, Haiyan, 2022. "An integrated power load point-interval forecasting system based on information entropy and multi-objective optimization," Applied Energy, Elsevier, vol. 314(C).
    10. Philip Shine & John Upton & Paria Sefeedpari & Michael D. Murphy, 2020. "Energy Consumption on Dairy Farms: A Review of Monitoring, Prediction Modelling, and Analyses," Energies, MDPI, vol. 13(5), pages 1-25, March.
    11. Xu, Yan & Yu, Qi & Du, Pei & Wang, Jianzhou, 2024. "A paradigm shift in solar energy forecasting: A novel two-phase model for monthly residential consumption," Energy, Elsevier, vol. 305(C).
    12. Suiling Wang & Zhiqiang Jiang & Hairong Zhang, 2022. "Correction of Reservoir Runoff Forecast Based on Multi-scenario Division and Multi Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 5277-5296, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philip Shine & John Upton & Paria Sefeedpari & Michael D. Murphy, 2020. "Energy Consumption on Dairy Farms: A Review of Monitoring, Prediction Modelling, and Analyses," Energies, MDPI, vol. 13(5), pages 1-25, March.
    2. Shine, P. & Scully, T. & Upton, J. & Shalloo, L. & Murphy, M.D., 2018. "Electricity & direct water consumption on Irish pasture based dairy farms: A statistical analysis," Applied Energy, Elsevier, vol. 210(C), pages 529-537.
    3. Breen, M. & Murphy, M.D. & Upton, J., 2019. "Development of a dairy multi-objective optimization (DAIRYMOO) method for economic and environmental optimization of dairy farms," Applied Energy, Elsevier, vol. 242(C), pages 1697-1711.
    4. Michael D. Murphy & Paul D. O’Sullivan & Guilherme Carrilho da Graça & Adam O’Donovan, 2021. "Development, Calibration and Validation of an Internal Air Temperature Model for a Naturally Ventilated Nearly Zero Energy Building: Comparison of Model Types and Calibration Methods," Energies, MDPI, vol. 14(4), pages 1-24, February.
    5. Jin, Hongyang & Li, Zhengshuo & Sun, Hongbin & Guo, Qinglai & Chen, Runze & Wang, Bin, 2017. "A robust aggregate model and the two-stage solution method to incorporate energy intensive enterprises in power system unit commitment," Applied Energy, Elsevier, vol. 206(C), pages 1364-1378.
    6. Murphy, M.D. & O’Mahony, M.J. & Upton, J., 2015. "Comparison of control systems for the optimisation of ice storage in a dynamic real time electricity pricing environment," Applied Energy, Elsevier, vol. 149(C), pages 392-403.
    7. Huber, Matthias & Dimkova, Desislava & Hamacher, Thomas, 2014. "Integration of wind and solar power in Europe: Assessment of flexibility requirements," Energy, Elsevier, vol. 69(C), pages 236-246.
    8. Hao, Ling & Wei, Mingshan & Xu, Fei & Yang, Xiaochen & Meng, Jia & Song, Panpan & Min, Yong, 2020. "Study of operation strategies for integrating ice-storage district cooling systems into power dispatch for large-scale hydropower utilization," Applied Energy, Elsevier, vol. 261(C).
    9. Sivaneasan, Balakrishnan & Kandasamy, Nandha Kumar & Lim, May Lin & Goh, Kwang Ping, 2018. "A new demand response algorithm for solar PV intermittency management," Applied Energy, Elsevier, vol. 218(C), pages 36-45.
    10. Cristina Pavanello & Marcello Franchini & Stefano Bovolenta & Elisa Marraccini & Mirco Corazzin, 2024. "Sustainability Indicators for Dairy Cattle Farms in European Union Countries: A Systematic Literature Review," Sustainability, MDPI, vol. 16(10), pages 1-25, May.
    11. Anees, Amir & Chen, Yi-Ping Phoebe, 2016. "True real time pricing and combined power scheduling of electric appliances in residential energy management system," Applied Energy, Elsevier, vol. 165(C), pages 592-600.
    12. Carreiro, Andreia M. & Jorge, Humberto M. & Antunes, Carlos Henggeler, 2017. "Energy management systems aggregators: A literature survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1160-1172.
    13. Andre Leippi & Markus Fleschutz & Michael D. Murphy, 2022. "A Review of EV Battery Utilization in Demand Response Considering Battery Degradation in Non-Residential Vehicle-to-Grid Scenarios," Energies, MDPI, vol. 15(9), pages 1-22, April.
    14. Wang, Chengshan & Jiao, Bingqi & Guo, Li & Tian, Zhe & Niu, Jide & Li, Siwei, 2016. "Robust scheduling of building energy system under uncertainty," Applied Energy, Elsevier, vol. 167(C), pages 366-376.
    15. Rajeev Bhat & Jorgelina Di Pasquale & Ferenc Istvan Bánkuti & Tiago Teixeira da Silva Siqueira & Philip Shine & Michael D. Murphy, 2022. "Global Dairy Sector: Trends, Prospects, and Challenges," Sustainability, MDPI, vol. 14(7), pages 1-7, April.
    16. Indy Man Kit Ho & Anthony Weldon & Jason Tze Ho Yong & Candy Tze Tim Lam & Jaime Sampaio, 2023. "Using Machine Learning Algorithms to Pool Data from Meta-Analysis for the Prediction of Countermovement Jump Improvement," IJERPH, MDPI, vol. 20(10), pages 1-15, May.
    17. Baxter Williams & Daniel Bishop & Patricio Gallardo & J. Geoffrey Chase, 2023. "Demand Side Management in Industrial, Commercial, and Residential Sectors: A Review of Constraints and Considerations," Energies, MDPI, vol. 16(13), pages 1-28, July.
    18. Florian Schierhorn & Max Hofmann & Taras Gagalyuk & Igor Ostapchuk & Daniel Müller, 2021. "Machine learning reveals complex effects of climatic means and weather extremes on wheat yields during different plant developmental stages," Climatic Change, Springer, vol. 169(3), pages 1-19, December.
    19. Nikolaos Kolokas & Dimosthenis Ioannidis & Dimitrios Tzovaras, 2021. "Multi-Step Energy Demand and Generation Forecasting with Confidence Used for Specification-Free Aggregate Demand Optimization," Energies, MDPI, vol. 14(11), pages 1-36, May.
    20. Puyu Feng & Bin Wang & De Li Liu & Hongtao Xing & Fei Ji & Ian Macadam & Hongyan Ruan & Qiang Yu, 2018. "Impacts of rainfall extremes on wheat yield in semi-arid cropping systems in eastern Australia," Climatic Change, Springer, vol. 147(3), pages 555-569, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:250:y:2019:i:c:p:1110-1119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.