IDEAS home Printed from https://ideas.repec.org/a/aen/journl/ej37-3-hirth.html
   My bibliography  Save this article

Why Wind Is Not Coal: On the Economics of Electricity Generation

Author

Listed:
  • Lion Hirth, Falko Ueckerdt, and Ottmar Edenhofer

Abstract

Electricity is a paradoxical economic good: it is highly homogeneous and heterogeneous at the same time. Electricity prices vary dramatically between moments in time, between location, and according to lead-time between contract and delivery. This three-dimensional heterogeneity has implication for the economic assessment of power generation technologies: different technologies, such as coal-fired plants and wind turbines, produce electricity that has, on average, a different economic value. Several tools that are used to evaluate generators in practice ignore these value differences, including "levelized electricity costs", "grid parity", and simple macroeconomic models. This paper provides a rigorous and general discussion of heterogeneity and its implications for the economic assessment of electricity generating technologies. It shows that these tools are biased, specifically, they tend to favor wind and solar power over dispatchable generators where these renewable generators have a high market share. A literature review shows that, at a wind market share of 30-40%, the value of a megawatt-hour of electricity from a wind turbine can be 20-50% lower than the value of one megawatt-hour as demanded by consumers. We introduce "System LCOE" as one way of comparing generation technologies economically.

Suggested Citation

  • Lion Hirth, Falko Ueckerdt, and Ottmar Edenhofer, 2016. "Why Wind Is Not Coal: On the Economics of Electricity Generation," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
  • Handle: RePEc:aen:journl:ej37-3-hirth
    as

    Download full text from publisher

    File URL: http://www.iaee.org/en/publications/ejarticle.aspx?id=2775
    Download Restriction: Access to full text is restricted to IAEE members and subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bushnell, James, 2010. "Building blocks: investment in renewable and non-renewable technologies," ISU General Staff Papers 201005250700001113, Iowa State University, Department of Economics.
    2. Neuhoff, Karsten & Ehrenmann, Andreas & Butler, Lucy & Cust, Jim & Hoexter, Harriet & Keats, Kim & Kreczko, Adam & Sinden, Graham, 2008. "Space and time: Wind in an investment planning model," Energy Economics, Elsevier, vol. 30(4), pages 1990-2008, July.
    3. Richard Schmalensee, 2013. "The Performance of U.S. Wind and Solar Generating Units," NBER Working Papers 19509, National Bureau of Economic Research, Inc.
    4. Holttinen, H., 2005. "Optimal electricity market for wind power," Energy Policy, Elsevier, vol. 33(16), pages 2052-2063, November.
    5. Hirst, Eric & Hild, Jeffrey, 2004. "The Value of Wind Energy as a Function of Wind Capacity," The Electricity Journal, Elsevier, vol. 17(6), pages 11-20, July.
    6. Luoma, Jennifer & Mathiesen, Patrick & Kleissl, Jan, 2014. "Forecast value considering energy pricing in California," Applied Energy, Elsevier, vol. 125(C), pages 230-237.
    7. Richard Green & Nicholas Vasilakos, 2012. "Storing Wind for a Rainy Day: What Kind of Electricity Does Denmark Export?," The Energy Journal, , vol. 33(3), pages 1-22, July.
    8. Paul L. Joskow, 2011. "Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies," American Economic Review, American Economic Association, vol. 101(3), pages 238-241, May.
    9. Andreas Schröder & Friedrich Kunz & Jan Meiss & Roman Mendelevitch & Christian von Hirschhausen, 2013. "Current and Prospective Costs of Electricity Generation until 2050," Data Documentation 68, DIW Berlin, German Institute for Economic Research.
    10. Gunnar Luderer & Volker Krey & Katherine Calvin & James Merrick & Silvana Mima & Robert Pietzcker & Jasper Vliet & Kenichi Wada, 2014. "The role of renewable energy in climate stabilization: results from the EMF27 scenarios," Climatic Change, Springer, vol. 123(3), pages 427-441, April.
    11. Kalkuhl, Matthias & Edenhofer, Ottmar & Lessmann, Kai, 2012. "Learning or lock-in: Optimal technology policies to support mitigation," Resource and Energy Economics, Elsevier, vol. 34(1), pages 1-23.
    12. Richard Green, 2005. "Electricity and Markets," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 21(1), pages 67-87, Spring.
    13. Brown, Sarah J. & Rowlands, Ian H., 2009. "Nodal pricing in Ontario, Canada: Implications for solar PV electricity," Renewable Energy, Elsevier, vol. 34(1), pages 170-178.
    14. Brigitte Knopf & Bjørn Bakken & Samuel Carrara & Amit Kanudia & Ilkka Keppo & Tiina Koljonen & Silvana Mima & Eva Schmid & Detlef P. Van Vuuren, 2013. "Transforming The European Energy System: Member States' Prospects Within The Eu Framework," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 4(supp0), pages 1-26.
    15. Hirth, Lion & Ueckerdt, Falko & Edenhofer, Ottmar, 2015. "Integration costs revisited – An economic framework for wind and solar variability," Renewable Energy, Elsevier, vol. 74(C), pages 925-939.
    16. Hirth, Lion, 2013. "The market value of variable renewables," Energy Economics, Elsevier, vol. 38(C), pages 218-236.
    17. Gunnar Luderer & Volker Krey & Katherine Calvin & James Merrick & Silvana Mima & Robert Pietzcker & Jasper van Vliet & Kenichi Wada, 2014. "The role of renewable energy in climate stabilization: results from the EMF27 scenarios," Post-Print halshs-00961843, HAL.
    18. Gautam Gowrisankaran & Stanley S. Reynolds & Mario Samano, 2016. "Intermittency and the Value of Renewable Energy," Journal of Political Economy, University of Chicago Press, vol. 124(4), pages 1187-1234.
    19. Lewis, Geoffrey McD., 2010. "Estimating the value of wind energy using electricity locational marginal price," Energy Policy, Elsevier, vol. 38(7), pages 3221-3231, July.
    20. Richard Green & Nicholas Vasilakos, 2011. "The Long-term Impact of Wind Power on Electricity Prices and Generating Capacity," Working Paper series, University of East Anglia, Centre for Competition Policy (CCP) 2011-04, Centre for Competition Policy, University of East Anglia, Norwich, UK..
    21. Erin Baker & Meredith Fowlie & Derek Lemoine & Stanley S. Reynolds, 2013. "The Economics of Solar Electricity," Annual Review of Resource Economics, Annual Reviews, vol. 5(1), pages 387-426, June.
    22. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9781107005198, September.
    23. Martin, Brian & Diesendorf, Mark, 1983. "The economics of large-scale wind power in the UK A model of an optimally mixed CEGB electricity grid," Energy Policy, Elsevier, vol. 11(3), pages 259-266, September.
    24. Hirth, Lion & Ziegenhagen, Inka, 2015. "Balancing power and variable renewables: Three links," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1035-1051.
    25. Hendrik Bessembinder & Michael L. Lemmon, 2002. "Equilibrium Pricing and Optimal Hedging in Electricity Forward Markets," Journal of Finance, American Finance Association, vol. 57(3), pages 1347-1382, June.
    26. Edenhofer, Ottmar & Hirth, Lion & Knopf, Brigitte & Pahle, Michael & Schlömer, Steffen & Schmid, Eva & Ueckerdt, Falko, 2013. "On the economics of renewable energy sources," Energy Economics, Elsevier, vol. 40(S1), pages 12-23.
    27. Severin Borenstein, 2012. "The Private and Public Economics of Renewable Electricity Generation," Journal of Economic Perspectives, American Economic Association, vol. 26(1), pages 67-92, Winter.
    28. Taylor, Lance & Black, Stephen L., 1974. "Practical general equilibrium estimation of resource pulls under trade liberalization," Journal of International Economics, Elsevier, vol. 4(1), pages 37-58, April.
    29. Katzenstein, Warren & Apt, Jay, 2012. "The cost of wind power variability," Energy Policy, Elsevier, vol. 51(C), pages 233-243.
    30. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9780521182935, September.
    31. Lamont, Alan D., 2008. "Assessing the long-term system value of intermittent electric generation technologies," Energy Economics, Elsevier, vol. 30(3), pages 1208-1231, May.
    32. Francis Bessière, 1970. "The "Investment '85" Model of Electricite de France," Management Science, INFORMS, vol. 17(4), pages 192-211, December.
    33. Boccard, Nicolas, 2010. "Economic properties of wind power: A European assessment," Energy Policy, Elsevier, vol. 38(7), pages 3232-3244, July.
    34. Ueckerdt, Falko & Hirth, Lion & Luderer, Gunnar & Edenhofer, Ottmar, 2013. "System LCOE: What are the costs of variable renewables?," Energy, Elsevier, vol. 63(C), pages 61-75.
    35. Crew, Michael A & Fernando, Chitru S & Kleindorfer, Paul R, 1995. "The Theory of Peak-Load Pricing: A Survey," Journal of Regulatory Economics, Springer, vol. 8(3), pages 215-248, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hirth, Lion & Ueckerdt, Falko & Edenhofer, Ottmar, 2015. "Integration costs revisited – An economic framework for wind and solar variability," Renewable Energy, Elsevier, vol. 74(C), pages 925-939.
    2. Lion Hirth, 2015. "The Optimal Share of Variable Renewables: How the Variability of Wind and Solar Power affects their Welfare-optimal Deployment," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    3. Hirth, Lion, 2013. "The market value of variable renewables," Energy Economics, Elsevier, vol. 38(C), pages 218-236.
    4. Lion Hirth & Falko Ueckerdt & Ottmar Edenhofer, 2014. "Why Wind Is Not Coal: On the Economics of Electricity," Working Papers 2014.39, Fondazione Eni Enrico Mattei.
    5. Ueckerdt, Falko & Brecha, Robert & Luderer, Gunnar, 2015. "Analyzing major challenges of wind and solar variability in power systems," Renewable Energy, Elsevier, vol. 81(C), pages 1-10.
    6. Lion Hirth, 2013. "The Market Value of Variable Renewables. The Effect of Solar and Wind Power Variability on their Relative Price," RSCAS Working Papers 2013/36, European University Institute.
    7. Hirth, Lion, 2016. "The benefits of flexibility: The value of wind energy with hydropower," Applied Energy, Elsevier, vol. 181(C), pages 210-223.
    8. Ueckerdt, Falko & Hirth, Lion & Luderer, Gunnar & Edenhofer, Ottmar, 2013. "System LCOE: What are the costs of variable renewables?," Energy, Elsevier, vol. 63(C), pages 61-75.
    9. Pietzcker, Robert C. & Ueckerdt, Falko & Carrara, Samuel & de Boer, Harmen Sytze & Després, Jacques & Fujimori, Shinichiro & Johnson, Nils & Kitous, Alban & Scholz, Yvonne & Sullivan, Patrick & Ludere, 2017. "System integration of wind and solar power in integrated assessment models: A cross-model evaluation of new approaches," Energy Economics, Elsevier, vol. 64(C), pages 583-599.
    10. Hirth, Lion & Müller, Simon, 2016. "System-friendly wind power," Energy Economics, Elsevier, vol. 56(C), pages 51-63.
    11. Hirth, Lion & Ziegenhagen, Inka, 2015. "Balancing power and variable renewables: Three links," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1035-1051.
    12. Ueckerdt, Falko & Brecha, Robert & Luderer, Gunnar & Sullivan, Patrick & Schmid, Eva & Bauer, Nico & Böttger, Diana & Pietzcker, Robert, 2015. "Representing power sector variability and the integration of variable renewables in long-term energy-economy models using residual load duration curves," Energy, Elsevier, vol. 90(P2), pages 1799-1814.
    13. Edenhofer, Ottmar & Hirth, Lion & Knopf, Brigitte & Pahle, Michael & Schlömer, Steffen & Schmid, Eva & Ueckerdt, Falko, 2013. "On the economics of renewable energy sources," Energy Economics, Elsevier, vol. 40(S1), pages 12-23.
    14. Merrick, James H., 2016. "On representation of temporal variability in electricity capacity planning models," Energy Economics, Elsevier, vol. 59(C), pages 261-274.
    15. Ueckerdt, Falko & Pietzcker, Robert & Scholz, Yvonne & Stetter, Daniel & Giannousakis, Anastasis & Luderer, Gunnar, 2017. "Decarbonizing global power supply under region-specific consideration of challenges and options of integrating variable renewables in the REMIND model," Energy Economics, Elsevier, vol. 64(C), pages 665-684.
    16. Ruhnau, Oliver, 2022. "How flexible electricity demand stabilizes wind and solar market values: The case of hydrogen electrolyzers," Applied Energy, Elsevier, vol. 307(C).
    17. Bistline, John E., 2017. "Economic and technical challenges of flexible operations under large-scale variable renewable deployment," Energy Economics, Elsevier, vol. 64(C), pages 363-372.
    18. Kirkerud, Jon Gustav & Bolkesjø, Torjus Folsland & Trømborg, Erik, 2017. "Power-to-heat as a flexibility measure for integration of renewable energy," Energy, Elsevier, vol. 128(C), pages 776-784.
    19. Romeiro, Diogo Lisbona & Almeida, Edmar Luiz Fagundes de & Losekann, Luciano, 2020. "Systemic value of electricity sources – What we can learn from the Brazilian experience?," Energy Policy, Elsevier, vol. 138(C).
    20. Christian Gambardella & Michael Pahle & Wolf-Peter Schill, 2016. "Do Benefits from Dynamic Tariffing Rise? Welfare Effects of Real-Time Pricing under Carbon-Tax-Induced Variable Renewable Energy Supply," Discussion Papers of DIW Berlin 1621, DIW Berlin, German Institute for Economic Research.

    More about this item

    JEL classification:

    • F0 - International Economics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aen:journl:ej37-3-hirth. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: David Williams (email available below). General contact details of provider: https://edirc.repec.org/data/iaeeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.